Chapter 2 Numerical Integrato
Chapter 2 Numerical Integration
3 Φ(5)=Jet dt≈4.8998922 y=f(t) Figure 2.1 Figure 2.1 Area under the curve y=f(t) for0<t<5
figure2 1 Values of重(x) 重(x) 1.00.2248052 2.01.1763426 3.02.5522185 4.03.8770542 5.048998922 6.055858554 7.06.0031690 8.06.2396238 9.06.3665739 10.06.4319219
2. 1 Introduction to Quadrature
2.1 Introduction to Quadrature
Definition 2. 1 Suppose that a=.0 1<.<M=b. A fo ormula of the form Q=∑(x)=0(0)+-n,()+…+f(mM)(21) with the property that f(x)dm=Q月+E[升 2.2) is called a numerical integration or quadrature formula. The term E()is called the truncation error for integration. The values ak ko are called the quadrature nodes, and fwk ko are called the weights