26 Opties: The prineiple of Least Time 26-1 Light This is the first of a number of chapters on the subject of electromagnet 26-1 Light radiation. Light, with which we see, is only one small part of a vast spectrum of the same kind of thing, the various parts of this spectrum being distinguished by 26-2 Reflection and refraction different values of a certain quantity which varies. This variable quantity could 26-3 Fermat's principle of least time be called the wavelength. As it varies in the visible spectrum, the light apparently changes color from red to violet. If we explore the spectrum systematically, from 26-4 Applications of Fer long wavelengths toward shorter ones, we would begin with what are usually called principle adiowaves. Radiowaves are technically available in a wide range of wavelengths, 26-5 a more precise statement of some even longer than those used in regular broadcasts; regular broadcasts bave Fermats principle wavelengths corresponding to about 500 meters. Then there are the so-called short waves, i. e radar waves, millimeter waves, and so on. There are no actual 26-6 How it works boundaries between one range of wavelengths and another, because nature did not present us with sharp edges. The number associated with a given name for the waves are only approximate and, of course, so are the names we give to the different ranges Then, a long way down through the millimeter waves, we come to what we all the infrared, and thence to the visible spectrum. Then going in the other direction, we get into a region which is called the ultraviolet. where the ultraviolet stops, the x-rays begin, but we cannot define precisely where this is; it is roughly at 10-8m,or10-2μ. These are“‘soft”x-rays; then there are ordinary x- rays and very hard x-rays; then y-rays, and so on, for smaller and smaller values of this dimension called the wavelength within this vast range of wavelengths, there are three or more regions of approximation which are especially interesting. In one of these, a condition exists in which the wavelengths involved are very small compared with the dimensions of the equipment available for their study; furthermore, the photon energies, using the quantum theory, are small compared with the energy sensitivity of the equip ment. Under these conditions we can make a rough first approximation by a method called geometrical optics. If, on the other hand, the wavelengths are com parable to the dimensions of the equipment, which is difficult to arrange with visible light but easier with radiowaves, and if the photon energies are still negligi- bly small, then a very useful approximation can be made by studying the behavior of the waves, still disregarding the quantum mechanics. This method is based the classical theory of electromagnetic radiation, which will be discussed in a later chapter. Next, if we go to very short wavelengths, where we can disregard the wave character but the photons have a very large energy compared with the sensitivity of our equipment, things get simple again. This is the simple photon picture, which we will describe only very roughly. The complete picture, which unifies the whole thing into one model, will not be available to us for a long time In this chapter our discussion is limited to the geometrical optics region, in hich we forget about the wavelength and the photon character of the light, which will all be explained in due time. We do not even bother to say what the light but just find out how it behaves on a large scale compared with the dimensions of interest. All this must be said in order to emphasize the fact that what we are going to talk about is only a very crude approximation; this is one of the chapters that e shall have to"unlearn"again. But we shall very quickly unlearn it, because we shall almost immediately go on to a more accurate method
Although geometrical optics is just an approximation, it is of very gre importance technically and of great interest historically. We shall present this ubject more historically than some of the others in order to give some idea of the development of a physical theory or physical idea tIll irst. light is, of course, familiar to everybody, and has been familiar since immemorial. Now one problem is, by what process do we see light?There have been many theories, but it finally settled down to one, which is that there is something which enters the eyewhich bounces off objects into the eye. We have eard that idea so long that we accept it, and it is almost impossible for us to ealize that very intelligent men have proposed contrary theories-that somethi omes out of the eye and feels for the object, for example. Some other important observations are that, as light goes from one place to another, it goes in straight lines, if there is nothing in the way, and that the rays do not seem to interfere with one another. That is, light is crisscrossing in all directions in the room, but the light that is passing across our line of vision does not affect the light that comes to us from some object. This was once a most powerful argument against the corpuscular theory; it was used by Huygens. If light were like a lot of arro shooting along, how could other arrows go through them so easily? Such philo sophical arguments are not of much weight. One could always say that light is made up of arrows which go through each other! 26-2 Refection and refraction The discussion above gives enough of the basic idea of geometrical optics- now we have to go a little further into the quantitative features. Thus far we have light going only in straight lines between two points; now let us study the behavior of light when it hits various materials. The simplest object is a mirror, and the law for a mirror is that when the light hits the mirror it does not continue in a straight line, but bounces off the mirror into a new straight line, which changes ig.26-1. The angle of incidence is when we change the inclination of the mirror. The question for the ancients was equal to the angle of refection what is the relation between the two angles involved? This is a very simple relation he light striking a mi angles, between each beam and the mirror, are equal. For some reason it is ustomary to measure the angles from the normal to the mirror surface Thus the So-called law of reflection is That is a simple enough proposition, but a more difficult problem is encoun- tered when light goes from one medium into another, for example from air into water;here also, we see that it does not go in a straight line. In the water the ray is at an inclination to its path in the air; if we change the angle i so that it comes down more nearly vertically, then the angle of"breakage"is not as great.But Fig. 26-2. A light ray is refracted if we tilt the beam of light at quite an angle, then the deviation angle is very large when it passes from one medium into The question is, what is the relation of one angle to the other? This also puzzled he ancients for a long time, and here they never found the answer! It is, however one of the few places in all of Greek physics that one may find any experimental Table 26-1 results listed. Claudius Ptolemy made a list of the angle in water for each of a number of different angles in air. Table 26-1 shows the angles in the air, in degrees Angle in air Angle in water and the corresponding angle as measured in the water. ( Ordinarily it is said that Greek scientists never did any experiments. But it would be impossible to obtain this table of values without knowing the right law, except by experiment. It 15-1/2° should be noted, however, that these do not represent independent careful measure 22-1/2° ments for each angle but only some numbers interpolated from a few measure ments,for they all fit perfectly on a parabola. This, then, is one of the important steps in the development of physical law 45-1/2 first we observe an effect, then we measure it and list it in a table; then we try to find the rule by which one thing can be connected with another. The above numerical table was made in 140 A.D. but it was not until 1621 that someone finally found the rule connecting the two angles! The rule, found by Willebrord
Snell, a Dutch mathematician, is as follows: if i is the angle in air and 0, is the angle in the water, then it turns out that the sine of i is equal to some constan Table 26-2 multiple of the sine of 8, sin ]i= n sin 8, (26.2) A air Angle in water For water the number n is approximately 1.33. Equation (26.2) is called Snells 7-1/2° 20° law; it permits us to predict how the light is going to bend when it goes from air into water. Table 26-2 shows the angles in air and in water according to Snells 29 law. Note the remarkable agreement with Ptolemy's list 40-1/2° 26-3 Fermats principle of least time Now in the further development of science, we want more than just a formul first we have an observation, then we have numbers that we measure then we have a law which summarizes all the numbers. but the real glory of science is that we can find a way of thinking such that the law is evident The first way of thinking that made the law about the behavior of light evident ras discovered by Fermat in about 1650, and it is called the principle of least time, or Fermat's principle. His idea is this: that out of all possible paths that it might take to get from one point to another, light takes the path which requires the shortest time Let us first show that this is true for the case of the mirror, that this simple principle contains both the law of straight-line propagation and the law for the mirror. So, we are growing in our understanding! Let us try to find the solution to the following problem. In Fig. 26-3 are shown two points, A and B, and a plane mirror, MM. What is the way to get from a to B in the shortest time? The answer is to go straight from A to B! But if we add the extra rule that the light has to strike the mirror and come back in the shortest time the answer is not so easy. One way would be to go as quickly as possible to the mirror and then B, on the path ADB. Of course, we then have a long path DB. If we move over a little to the right, to E, we slightly increase the first distance, but we greatly decrease the second one, and so the total path length, and therefore the travel time, is less How can we find the point C for which the time is the shortest? We can find it Fig.26-3.Illustration very nicely by a geometrical trick of least time We construct on the other side of MM' an artificial point B, which is the same distance below the plane MMas the point B is above the plane. Then we draw the line EB. Now because BFM is a right angle and BF= FB, EB is equal to EB. Therefore the sum of the two distances, AE EB, which is propor- tional to the time it will take if the light travels with constant velocity, is also the sum of the two lengths AE+ EB. Therefore the problem becomes, when is the sum of these two lengths the least? The answer is easy: when the line goes through point C as a straight line from A to B! In other words, we have to find the point yhere we go toward the artificial point, and that will be the correct one. Now if ACB is a straight line, then angle BCF is equal to angle B CF and thence to angle ACM. Thus the statement that the angle of incidence equals the angle of reflection is equivalent to the statement that the light goes to the mirror in such a way that it comes back to the point b'in the least possible time. Originally, the statement made by Hero of Alexandria that the light travels in such that it he mirror and to the other point in the shortest possible distance, so it is not a dern theory. It was this that inspired Fermat to suggest to himself that perhaps refraction operated on a similar basis. But for refraction, light obviously does not use the path of shortest distance, so fermat tried the idea that it takes the shortest Before we go on to analyze refraction, we should make one more remark about the mirror. If we have a source of light at the point b and it sends light to- vard the mirror, then we see that the light which goes to A from the point b comes to A in exactly the same manner as it would have come to A if there were an object at B, and no mirror. Now of course the eye detects only the light which enters it physically, so if we have an object at B and a mirror which makes the light com
into the eye in exactly the same manner as it would have come into the eye if the object were at B, then the eye-brain system interprets that, assuming it does not know too much, as being an object at B. So the illusion that there is an object behind the mirror is merely due to the fact that the light which is entering the eye is entering in exactly the same manner, physically, as it would have entered had there been an object back there (except for the dirt on the mirror, and our knowledge of the existence of the mirror, and so on, which is corrected in the brain) Now let us demonstrate that the principle of least time will give Snell's law of refraction. We must, however, make an assumption about the speed of light in water. We shall assume that the speed of light in water is lower than the speed of light in air by a certain factor, n In Fig. 26-4, our problem is again to go from A to b in the shortest time. To illustrate that the best thing to do is not just to go in a straight line, let us imagine that a beautiful girl has fallen out of a boat, and she is screaming for help in the water at point B. The line marked x is the shoreline. We are at point A on land and we see the accident, and we can run and can also swim. But we can run faster Fig. 26-4. Illustration of Fermat's than we can swim. What do we do? Do we go in a straight line? (Yes, no doubt! principle for refraction. However, by using a little more intelligence we would realize that it would be advan tageous to travel a little greater distance on land in order to decrease the distance in the water, because we go so much slower in the water.( Following this line of reasoning out, we would say the right thing to do is to compute very carefully what should be done! )At any rate, let us try to show that the final solution to the problem is the path ACB, and that this path takes the shortest time of all possible nes. If it is the shortest path, that means that if we take any other, it will be longer. So, if we were to plot the time it takes against the position of point X, we would a curve something like that shown in Fig. 26-5, where point C corresponds to the shortest of all possible times. This means that if we move the point X to points near C, in the first approximation there is essentially no change in time because the slope at the bott of the f finding the law will be to consider that we move the place by a very small amount, and to demand that there be essentially no change in time. (Of course there is an infinitesimal change of a second order; we ought to have a positive increase for displacements in either Fig. 26-5. The minimum time corre- direction from C)So we consider a nearby point X and we calculate how long it sponds to point C, but nearby points would take to go from a to b by the two paths, and compare the new path with orrespond to nearly the same time. the old path. It is very easy to do. We want the difference, of course to be nearly zero if the distance XC is short. First, look at the path on land. If we draw a erpendicular XE, we see that this path is shortened by the amount EC. Let us 6, y we gain by not having to go that extra distance. On the other hand, in the water, by drawing a corresponding perpendicular, CF, we find that we have to go the extra distance XF. and that is what we lo In tin have taken to go the distance EC, but we lose the time it would have taken to go the distance XF. Those times must be equal since, in the first approximation, there is to be no change in time. But supposing that in the water the speed is 1/n times as fast as in air. then we must have 26.3) Therefore we see that when we have the right point, XC sin EXC = n XC sin XCF or, cancelling the common hypotenuse length XC and noting that ECN= 0: and XO (264) that to get from one point to another in the least time when the ratio of speeds is n, the light should enter at such an angle that the ratio of the sines of
26-4 Applications of Fermats principle Now let us consider some of the interesting consequences of the principle of least time. First is the principle of reciprocity. If to go from A to b we have found the path of the least time, then to go in the opposite direction(assuming that light goes at the same speed in any direction), the shortest time will be the same path and therefore, if light can be sent one way, it can be sent the other way An example of interest is a glass block with plane parallel faces, set at an angle to a light beam. Light, in going through the block from a point a to a point B (Fig. 26-6)does not go through in a straight line, but instead it decreases the time ig. 26-6. a beam of light is offset as in the block by making the angle in the block less inclined, although it loses a little it passes through a transparent block bit in the air. The beam is simply displaced parallel to itself because the angles in and out are the same a third interesting phenomenon is the fact that when we see the sun setting it is already below the horizon! It does not look as though it is below the horizon TO APPARENT SUN but it is(Fig. 26-7). The earth's atmosphere is thin at the top and dense at the bottom. Light travels more slowly in air than it does in a vacuum, and so the light LIGHT PATH of the sun can get to point S beyond the horizon more quickly if, instead of just going in a straight line, it avoids the dense regions where it goes slowly by getting through them at a steeper tilt. When it appears to go below the horizon, it is ARTH actually already well below the horizon. Another example of this phenomenon is the mirage that one often sees while driving on hot roads. One sees"water"on the road, but when he gets there, it is as dry as the desert! The phenomenon is the Fig. 26-7. Near the ho What we are really seeing is the sky light"reflected"on the road: parent sun is higher t e true sun by light from the sky, heading for the road, can end up in the eye, as shown in Fig. about 1/2 degree 26-8. Why? The air is very hot just above the road but it is cooler up higher Hotter air is more expanded than cooler air and is thinner, and this decreases the speed of light less. That is to say, light goes faster in the hot region than in the cool region. Therefore, instead of the light deciding to come in the straightforward LIGHT FROM SKY vay, it also has a least-time path by which it goes into the region where it goes faster for awhile, in order to save time. So, it can go in a curve As another important example of the principle of least time, suppose that we would like to arrange a situation where we have all the light that comes out of one 26-8. A mirage point, P, collected back together at another point, P'( Fig. 26-9). That mean of course, that the light can go in a straight line from P to P That is all right But how can we arrange that not only does it go straight, but also so that the light starting out from P toward Q also ends up at Pr? We want to bring all the light back to what we call a focus. How? If the light always takes the path of least time, then certainly it should not want to go over all these other paths. The only way that the light can be perfectly satisfied to take several adjacent paths is to make those times exactly equal! Otherwise, it would select the one of least time. There- OPTICAL SYSTEl fore the problem of making a focusing system is merely to arrange a device so that it takes the same time for the light to go on all the different paths! This is easy to do. Suppose that we had a piece of glass in which light goes Fig. 26-9. An optical"black box slower than it does in the air(Fig. 26-10). Now consider a ray which goes in air he path PoP. That is a longer path than from P directly to P and no doubt takes a longer time. But if we were to insert a piece of glass of just the right thick ai Ss(we shall later figure out how thick) it might exactly compensate the excess time that it would take the light to go at an angle! In those circumstances we can arrange that the time the light takes to go straight through is the same as the time it takes to go in the path PoP. Likewise, if we take a ray Prr'P' which is partI inclined, it is not quite as long as PQP, and we do not have to compensate as much as for the straight one, but we do have to compensate somewhat. We end up with a piece of glass that looks like Fig. 26-10. With this shape, all the ligh which comes from P will go to P. This, of course, is well known to us, and we call such a device a converging lens. In the next chapter we shall actually calculate g.26-10.Afo what shape the lens has to have to make a perfect focus. Take another example: suppose we wish to arrange some mirrors so that the light from P always goes to P'(Fig. 26-11). On any path it goes to some mirror