Peak ripple value Glera Transition band Peak ripple value Passband, Stopband- Passband Stopband edge edge trequency frequency Transition band Figure 7. 1: Typical magnitude specifications for a digital lowpass filter 2021年12月5日2时7分
2021年12月5日2时7分 Passband edge frequency Stopband edge frequency Peak ripple value Peak ripple value Transition band
6. 1 Concepts on Digital Filter Passband defined by 0< Error bound Magnitude 1- <G(e o)31+, forlo)so Stopband defined by 0.≤0≤丌 Error bound Magnitude G(e1≤d,forO.≤ol≤x Transition band 0<0<O 2021年12月5日2时7分
2021年12月5日2时7分 1 1 ( ) j p p p G e for − + Passband 0 p Magnitude p defined by Error bound Stopband defined by s Error bound s Magnitude ( ) , j s s G e for 6.1 Concepts on Digital Filter Transition band p s
6. 1 Concepts on Digital Filter o Note The frequency response G(elo )of a digital filter is a periodic function of @, and the magnitude response of a real- coefficient digital filter is an even function of (. As a result, the digital filter specifications are given only for the range 0<≤x 2021年12月5日2时7分
2021年12月5日2时7分 Note: The frequency response ( ) j G e filter is a periodic function of ω, and the magnitude response of a real-coefficient digital filter is an even function of ω. of a digital 6.1 Concepts on Digital Filter As a result, the digital filter specifications are given only for the range 0
6. 1 Concepts on Digital Filter o Digital filter specifications are often given in terms of loss function A()2=-200G(c. in dB. thus Peak passband ripple a.=-20lo gIe δn)dB P Minimum stopband attenuation s=-20logo(SdB 2021年12月5日2时7分
2021年12月5日2时7分 Digital filter specifications are often given in terms of loss function, ( ) 20log10 ( ) j A G e = − in dB. Thus Peak passband ripple Minimum stopband attenuation p p = − − 20log 1 10 ( ) dB s s = −20log10 ( )dB 6.1 Concepts on Digital Filter
6. 1 Concepts on Digital Filter o The magnitude response specifications for a digital low pass filter may alternatively be given I a normalized form The maximum value of the magnitude in passband is assumed to be unity The maximum passband deviation denoted as 1/v1+82 is given by the minimum value of the magnitude in the passband The maximum stopband magnitude is denoted by 1/A 2021年12月5日2时7分
2021年12月5日2时7分 ➢ The maximum value of the magnitude in passband is assumed to be unity. The magnitude response specifications for a digital lowpass filter may alternatively be given I a normalized form: ➢ The maximum passband deviation, denoted as is given by the minimum value of the magnitude in the passband. 6.1 Concepts on Digital Filter 2 1 1+ ➢ The maximum stopband magnitude is denoted by 1/A