Part I11Symmetry and BondingChapter 5MolecularOrbitals(分子轨道)Prof.Dr.XinLu(吕鑫)Email: xinlu@xmu.edu.cnhttp://pcoss.xmu.edu.cn/xlv/index.htmlhttp://pcoss.xmu.edu.cn/xlv/courses/theochem/index.html
Part III Symmetry and Bonding Chapter 5 Molecular Orbitals(分子轨道) Prof. Dr. Xin Lu (吕鑫) Email: xinlu@xmu.edu.cn http://pcoss.xmu.edu.cn/xlv/index.html http://pcoss.xmu.edu.cn/xlv/courses/theochem/index.html
Reviewingdirect products·如果两个函数分别按不可约表示r)和rG变换,那么他们的乘积函数当按这两个不可约表示的直积r?r变换·两个不可约表示直积中各对称操作的特征标就是两个不可约表示相应特征标的乘积每个对称操作的特征标的乘积:(a,b,c,··)?(p,q,r,.)=(a×p,b×q,c×r,.·)·每个点群必有一个全对称不可约表示rtot.sym.-所有操作的特征标均为+1·任一不可约表示r(i)与全对称不可约表示的直积就是该表示本身:r(i)?rtot.sym.=『r(i)·任意一维不可约表示和它自身的直积就是全对称不可约表示:『(i)?『(i)=『tot.sym·任意高维不可约表示和它自身的直积r(i)?r(i)必包含全对称不可约表示rtot.sym。·标量(数字)(numbers)按全对称不可约表示变换
Reviewing—direct products • 如果两个函数分别按不可约表示 Γ (i) 和 Γ (j)变换, 那么他们的乘积函数当按这两个不 可约表示的直积Γ (i)⊗ Γ (j)变换. • 两个不可约表示直积中各对称操作的特征标就是两个不可约表示相应特征标的乘积 每个对称操作的特征标的乘积: (a, b, c, . . .) ⊗ (p, q, r, . . .) = (a×p, b×q, c×r, . . .) • 每个点群必有一个全对称不可约表示Γ tot. sym. - 所有操作的特征标均为 +1。 • 任一不可约表示Γ (i)与全对称不可约表示的直积就是该表示本身: Γ (i)⊗ Γ tot. sym.= Γ (i) . • 任意一维不可约表示和它自身的直积就是全对称不可约表示: Γ (i)⊗ Γ (i)= Γ tot. sym. • 任意高维不可约表示和它自身的直积Γ (i)⊗Γ (i )必包含全对称不可约表示Γ tot. sym. 。 • 标量(数字) (numbers) 按全对称不可约表示变换
Reviewingvanishing integrals1.若函数山不按全对称不可约表示变换,则其积分I=「山dt必为零。2.若两个原子的AO波函数,和山,不依同一不可约表示变换,则其重叠积分Sij=『,山,dt必为零。换句话说,对称性相同(依同一不可约表示变换)的原子轨道间才可以有效重叠。3.矩阵元Q=了,Q,dt的值必为零若对应的直积r?r(Qr)不含全对称不可约表示。4.哈密顿算符必然按全对称不可约表示变换(?!),若两个原子的AO波函数Φ和山不依同一不可约表示变换,则交换积分βi=H山,dt 必为零。即对称性相同(依同一不可约表示变换的原子轨道间才可以有效成键,形成分子轨道
Reviewing—vanishing integrals 1. 若函数ψ不按全对称不可约表示变换,则其积分𝑰 = ψ𝒅𝝉 必为零 。 2. 若两个原子的AO波函数ψi 和 ψj不依同一不可约表示变换,则其重叠积分𝑺𝒊𝒋 = ψ𝒊 ∗ψ𝒋 dτ 必为零。换句话说,对称性相同(依同一不可约表示变换)的原子轨道间才 可以有效重叠。 3. 矩阵元𝑸𝒊𝒋 = ψ𝒊 ∗𝑸 ψ𝒋 dτ 的值必为零若对应的直积 Γ (i) ⊗ Γ (Q)⊗ Γ (j) 不含全对称不可约 表示。 4. 哈密顿算符必然按全对称不可约表示变换(? !),若两个原子的AO波函数ψi 和 ψj 不依同一不可约表示变换,则交换积分 𝜷𝒊𝒋 = ψ𝒊 ∗𝑯 ψ𝒋 dτ 必为零。即对称性相同(依 同一不可约表示变换)的原子轨道间才可以有效成键,形成分子轨道
5.Molecular orbitals.Nowthatwehave developedthenecessaryGroupTheorytools,wecanusethemtodrawup(qualitative)MOdiagrams.(注:这是正则分子轨道(canonicalmolecularorbitalCMO)图像,而非大一时学过的定域分子轨道(LMO)图像!)Symmetry arguments greatly simplify this process and help us not only to work out whichinteractions are important butalsomake it possibleto sketch theform ofthe MOs inastraightforwardway· In addition, we will be able to say something about the resulting electronic properties ofthemolecule and discuss why molecules havea preferencefor one shapeoveranother
5. Molecular orbitals • Now that we have developed the necessary Group Theory tools, we can use them to draw up (qualitative) MO diagrams. (注:这是正则分子轨道(canonical molecular orbital, CMO)图像,而非大一时学过的定域分子轨道(LMO)图像!) • Symmetry arguments greatly simplify this process and help us not only to work out which interactions are important but also make it possible to sketch the form of the MOs in a straightforward way. • In addition, we will be able to say something about the resulting electronic properties of the molecule and discuss why molecules have a preference for one shape over another
5. Molecular orbitalsThe procedure we will adopt for drawing up MO diagrams :1.Identifyingthepointgroupof themoleculetobeconcerned2. Identifying the AOs (valence orbitals) to be involved in bonding3.Classifying theAOs according to symmetry and, if necessary, combining thosesymmetrically equivalent AOs to form symmetry orbitals, SOs4. Allowing orbitals of the same symmetry to overlap (both in phase and out of phase!), andhence constructing the MO diagram(In the Chapter of"Representations,we have learnt some concepts needed in step 3.)
5. Molecular orbitals The procedure we will adopt for drawing up MO diagrams: 1. Identifying the point group of the molecule to be concerned. 2. Identifying the AOs (valence orbitals) to be involved in bonding. 3. Classifying the AOs according to symmetry and, if necessary, combining those symmetrically equivalent AOs to form symmetry orbitals, SOs. 4. Allowing orbitals of the same symmetry to overlap (both in phase and out of phase!), and hence constructing the MO diagram. (In the Chapter of “Representations”, we have learnt some concepts needed in step 3.)