一、区域的概念 二、单连通域与多连通域 三、典型例题 四、小结与思考
文件格式: PPT大小: 1.43MB页数: 23
一、复数的概念 二、复数的代数运算 三、小结与思考
文件格式: PPT大小: 1.3MB页数: 19
§1.1. Sums and Products §1.2. Basic Algebraic Properties §1.3. Further Properties §1.4. Moduli §1.5. Conjugates §1.6. Exponential Form §1.7. Products and Quotients in Exponential Form §1.8. Roots of Complex Numbers §1.9. Examples §1.10. Regions in the Complex Plane
文件格式: PDF大小: 1.05MB页数: 19
§2.1. Functions of a Complex Variable §2.2. Mappings §2.3. The Exponential Function and its Mapping Properties §2.4. Limits §2.5. Theorems on Limits §2.6. Limits Involving the Point at Infinity §2.7. Continuity §2.8. Derivatives §2.9. Differentiation Formulas §2.10. Cauchy-Riemann Equations §2.11. Necessary and Sufficient Conditions for Differentiability §2.12. Polar Coordinates §2.13. Analytic Functions §2.14. Examples §2.15. Harmonic Functions
文件格式: PDF大小: 1.62MB页数: 25
§3.1. The Exponential Function §3.2. The Logarithmic Function §3.3. Branches and Derivatives of Logarithms §3.4. Some Identities on Logarithms §3.5. Complex Power Functions §3.6. Trigonometric Functions §3.7. Hyperbolic Functions §3.8. Inverse Trigonometric and Hyperbolic Functions
文件格式: PDF大小: 439.03KB页数: 11
§4.1. Derivatives of Complex-Valued Functions of §4.2. Definite Integrals of Functions w §4.3. Paths §4.4. Path Integrals §4.5. Examples §4.6. Upper Bounds for Integrals §4.7. Primitive Functions §4.8. Examples §4.9. Cauchy Integral Theorem §4.10. Proof of Cauchy Integral Theorem §4.11. Extended Cauchy Integral Theorem §4.12. Cauchy Integral Formula §4.13. Derivatives of Analytic Functions §4.14. Liouville’s Theorem §4.15. Maximum Modulus Principle
文件格式: PDF大小: 2.85MB页数: 42
§5.1. Convergence of Series §5.2. Taylor Series §5.3. Examples §5.4. Laurent Series §5.5. Examples §5.6. Absolute and Uniform Convergence of Power Series §5.7. Continuity of Sums of Power Series §5.8. Integration and Differentiation of Power Series §5.9. Uniqueness of Series Representations §5.10. Multiplication and Division of Power Series
文件格式: PDF大小: 1.12MB页数: 29
§6.1. Residues §6.2. Cauchy’s Residue Theorem §6.3. Using a Single Residue §6.4. The Three Types of Isolated Singular Points §6.5. Residues at Poles §6.6. Examples §6.7. Zeros of Analytic Functions §6.8. Uniquely Determined Analytic Functions §6.9. Zeros and Poles §6.10. Behavior of f Near Isolated Singular Points §6.11. Reflection Principle
文件格式: PDF大小: 1.11MB页数: 26
©2025 mall.hezhiquan.com 和泉文库
帮助反馈侵权