Ch. 7 Violations of the ideal conditions 1 ST pecification 1.1 Selection of variables Consider a initial model. which we assume that Y=x1/1+E, It is not unusual to begin with some formulation and then contemplate adding more variable(regressors) to the model
文件格式: PDF大小: 144.63KB页数: 15
Ch. 6 The Linear model under ideal conditions The(multiple) linear model is used to study the relationship between a dependent variable(Y) and several independent variables(X1, X2, ,Xk). That is ∫(X1,X2,…,Xk)+ E assume linear function 1X1+B2X2+…+6kXk+E xB+ where Y is the dependent or explained
文件格式: PDF大小: 168.15KB页数: 27
Ch. 5 Hypothesis Testing The current framework of hypothesis testing is largely due to the work of Neyman and Pearson in the late 1920s, early 30s, complementing Fisher's work on estimation. As in estimation, we begin by postulating a statistical model but instead of seeking an estimator of 6 in e we consider the question whether
文件格式: PDF大小: 178.35KB页数: 17
Ch. 4 Asymptotic Theory From the discussion of last Chapter it is obvious that determining the dis- tribution of h(X1, X2, . . Xr) is by no means a trival exercise. It turns out that more often than not we cannot determine the distribution exactly. Because of the importance of the problem, however, we are forced to develop approximations the subject of this Chapter
文件格式: PDF大小: 185.13KB页数: 26
Ch. 3 Estimation 1 The Nature of statistical Inference It is argued that it is important to develop a mathematical model purporting to provide a generalized description of the data generating process. A prob bility model in the form of the parametric family of the density functions p=f(:0),0E e and its various ramifications formulated in last chapter
文件格式: PDF大小: 203.47KB页数: 32
Ch. 2 Probability Theory 1 Descriptive Study of Data 1.1 Histograms and Their Numerical Characteristics By descriptive study of data we refer to the summarization and exposition(tab- ulation, grouping, graphical representation) of observed data as well as the derivation of numerical characteristics such as measures of location, dispersion and shape
文件格式: PDF大小: 254.41KB页数: 46
Ch. 24 Johansen's mle for Cointegration We have so far considered only single-equation estimation and testing for cointe- gration. While the estimation of single equation is convenient and often consis- tent, for some purpose only estimation of a system provides sufficient information This is true, for example, when we consider the estimation of multiple cointe- grating vectors, and inference about the number of such vectors. This chapter examines methods of finding the cointegrating rank and derive the asymptotic
文件格式: PDF大小: 149.71KB页数: 22
Ch. 23 Cointegration 1 Introduction An important property of (1) variables is that there can be linear combinations of theses variables that are I(O). If this is so then these variables are said to be cointegrated. Suppose that we consider two variables Yt and Xt that are I(1) (For example, Yt= Yt-1+ St and Xt= Xi-1+nt.)Then, Yt and Xt are said to be cointegrated if there exists a B such
文件格式: PDF大小: 191.61KB页数: 22
Ch. 22 Unit root in Vector Time series 1 Multivariate Wiener Processes and multivari- ate FCLT Section 2.1 of Chapter 21 described univariate standard Brownian motion W(r) as a scalar continuous-time process(W: rE0, 1-R). The variable W(r) has a N(O, r)distribution across realization, and for any given realization, w(r) is continuous function of the date r with independent increments. If a set of k such independent processes, denoted
文件格式: PDF大小: 127.61KB页数: 11
Ch. 21 Univariate Unit Root process 1 Introduction Consider OLS estimation of a AR(1)process, Yt= pYt-1+ut where ut w ii d (0, 0), and Yo=0. The OLS estimator of p is given by and we also have
文件格式: PDF大小: 271.29KB页数: 47
©2025 mall.hezhiquan.com 和泉文库
帮助反馈侵权