(二)泛称命题及其逻辑结构 1、泛称命题的含义 2、泛称命题的构成要素分析 个体词、谓词、量词、个体变项) 3、全域下的泛称命题逻辑结构形式刻划 (x)(SX->P×) >(Vx)(Sx>PX) (三x)(SXPx) (三x)(SX-Px)
(二)泛称命题及其逻辑结构 1、泛称命题的含义 2、泛称命题的构成要素分析 (个体词、谓词、量词、个体变项) 3、全域下的泛称命题逻辑结构形式刻划 ➢ (x)(Sx→Px) ➢ (x)(Sx→¬Px) ➢ (x)(SxPx) ➢ (x)(Sx¬Px)
个体词、谓词 ※谓词,在谓词逻辑中,简单命题分解成个体词和 谓词.个体词是可以独立存在的客体,它可以是 具体事物或抽象的概念。谓词是用来刻划个体词 的性质或事物之间关系的词 ※个体词分个体常项(用abc…表示和个体变项(用 xyz灬,表示);谓词分谓词常项(表示具体性质和 关系)和谓词变项(表示抽象的或泛指的谓词),用 E,F,G,H,表示。 注意:单独的个体词和谓词不能构成命题,将个体 词和谓词分开不是命题
个体词、谓词 ※谓词,在谓词逻辑中,简单命题分解成个体词和 谓词. 个体词是可以独立存在的客体,它可以是 具体事物或抽象的概念。谓词是用来刻划个体词 的性质或事物之间关系的词。 ※个体词分个体常项(用a,b,c,…表示)和个体变项(用 x,y,z,…表示);谓词分谓词常项(表示具体性质和 关系)和谓词变项(表示抽象的或泛指的谓词),用 E,F,G,H,…表示。 注意:单独的个体词和谓词不能构成命题,将个体 词和谓词分开不是命题
谓词填式、一元谓词、多元谓词 (1)谓词填式:谓词字母后填以客体所得的式子。 例:H(a,b) (2)若谓词字母联系着个客体,则称作一元谓词;若谓 词字母联系着二个客体,则称作二元谓词;若谓词字 母联系着n个客体,则称作n元谓词。 (3)客体的次序必须是有规定的 例:河南省北接河北省。 a l 写成二元谓词为:L(a,b),但不能写成L(b,a)
谓词填式、一元谓词、多元谓词 (1)谓词填式:谓词字母后填以客体所得的式子。 例:H(a, b) (2)若谓词字母联系着一个客体,则称作一元谓词;若谓 词字母联系着二个客体,则称作二元谓词;若谓词字 母联系着n个客体,则称作n元谓词。 (3)客体的次序必须是有规定的。 例:河南省北接河北省。 a L b 写成二元谓词为:L(a,b),但不能写成L(b,a)
谓词公式 ※谓词公式,由原子公式、联结词和量词可构成谓词公式(严格定 义见教材)。命题的符号化结果都是谓词公式。 例如:(x)(F(x)→G(x)), (x)(F(x)∧G(x), (x)(Yy)(F(x)AF(y)∧L(x,y)→H(x,y))等都是谓词公 式。 ※谓词公式只是一个符号串,没有什么意义,但我们给这个符号串 个解释,使它具有真值,就变成—一个命题.所谓解释就是使公 式中的每一个变项都有个体域中的元素相对应 ※在谓词逻辑中,命题符号化必须明确个体域,无特别说明认为是 全总个体域。一般地,使用全称量词,特性谓词后用→;使用 存在量词彐,特性谓词后用入
谓词公式 ※ 谓词公式,由原子公式、联结词和量词可构成谓词公式(严格定 义见教材)。 命题的符号化结果都是谓词公式。 例如: (x)(F(x)→G(x)), (x)(F(x)G(x)), (x)(y)(F(x)F(y)L(x,y)→H(x,y))等都是谓词公 式。 ※ 谓词公式只是一个符号串,没有什么意义,但我们给这个符号串 一个解释,使它具有真值,就变成一个命题. 所谓解释就是使公 式中的每一个变项都有个体域中的元素相对应。 ※ 在谓词逻辑中,命题符号化必须明确个体域,无特别说明认为是 全总个体域。一般地,使用全称量词,特性谓词后用→;使用 存在量词,特性谓词后用
谓词公式的归纳法定义 (1)原子谓词公式是谓词公式; (2)若A是谓词公式,则一A也是谓词公式; (3)若A,B都是谓词公式,则(AAB),(AVB),(A→>B),(A<>B) 都是谓词公式; (4)若A是谓词公式,x是任何变元,则(x)A,(彐x)A也都 是谓词公式;
谓词公式的归纳法定义 ⑴ 原子谓词公式是谓词公式; ⑵ 若A是谓词公式,则¬A也是谓词公式; ⑶ 若A, B都是谓词公式,则 (AB),(AB),(A→B),(AB) 都是谓词公式; ⑷ 若A是谓词公式,x是任何变元,则(x)A, (x)A也都 是谓词公式;