(2-1) =P=PE (2-2) f=f"=∫ (2-3) fi=fi d=/y2 fi /x, P ' y P=gx. P (2-8) piy,P=rx,f (2-9) f1=f2 (2-10) Yi Yi xi (2-11) K1=y1/ (2-12) yi/y, K1=当功2 RT dv -lnZ (2-15) T,, n dP RT (2-16) i /T, P, nj RT a,=0.42748R2T2/P b=0.08664RT/P a1=27R272/64P b=RT:/8P
T = T = T = (2-1) P = P = P = (2-2) ˆ ˆ ˆ iii fff === (2-3) L i V i f ~ f ~ = (2-4) f / y P ~ ˆ i v i i V = (2-5) f / x P ~ ˆ i L i i L = (2-6) oL i i L i = ~ fi / x f (2-7) ˆ i yiP ˆ i xiP V L = (2-8) oL i i i i i V y P x f ˆ = (2-9) 2 i 1 i f ~ f ~ = (2-10) 2 i 2 i 1 i 1 i x = x (2-11) (2-12) j i i j i j ij K K x x y y = = (2-13) V L i i i i i ˆ ˆ x y K = = (2-14) t m t v i i d ln 1 ln j V Z V RT n P RT ˆ T ,V ,n − − = (2-15) dP 1 ln j 0 i t i − = P RT n V RT ˆ T ,P,n P (2-16) ( ) m m m m m m T v v b a V b RT P + − − = 0.5 ai R Tc,i Pc,i 2 2 = 0.42748 bi = 0.08664 RTc,i Pc,i ai 27R Tc,i 64Pc,i 2 2 = bi = RTc,i 8Pc,i i i i K = y x
∑y、a) bn=∑b SRK方程 RT v-b v(v+b) a1=ac·aa(r) a=0.42748R272=/P an2={+m-(/,)] m=0.48508+1.551710,-0.15613a2 a=②a) b=∑yb RT I+V Zm=PV/RT=V/v-b)-a/rTV ④= b 2 V, RTV K,=Vi_rii (2-17) p 当x1→1时,作1→1 n=f/x. (2-19)
( ) 2 m = i ai a y m = ibi b y SRK 方程: v(v b) a v b RT P + − − = ai ac,i i(T ) = • c,i c,i i ac, R T P 2 2 = 0.42748 ( ) ( ) 2 0.5 i T = 1+ mi 1- T Tc,i i mi i 2 = 0.48508 +1.55171 − 0.15613 ( ) 2 = i ai a y = ibi b y + − = 0 − + P ab V P a V P RT Vt b t t 3 2 ( ) Zm = PVt RT =Vt Vt − b − a RTVt t i m t i i RTV aa ln Z V b b ˆ ln 2 V b 1- t − − − = ˆ P f x y K V i oL i i i i i = = (2-17) 当 xi →1 时, i →1 (2-18) L i i L i i f ˆ f x ˆ = (2-19) v - dP 1 ln P 0 i i L = P RT P RT f (2-20)
f P-PP dP=hΦ+ In P P④ xPV (P-PSVRT (2-21) 当x;→0时,y;*→1 H lm fi=Hx, (t, P f=Y:*x H ∑( RTlny) RAIny T P Iny, y2 A12x1 A21x2 A21x2 A12x1 hy1=x2[A42+2(421-A12kx] hy2=x2{42+2(42-A1)x2] Iny X 4=exr-(1-减)R] Gk (, -g,)/I p(- 1+-++
( ) s i s i L s i i P P i P i L i P P ln RT v P P dP ln P RT dP v P RT v P f ln s i s i − − = + + − = − RT 0 1 f P expv (P P ) RT S S i L i i S i L i = • − (2-21) 当 xi → 0 时, i →1 (2-22) i L i 0 oL i lim i x f ~ f H x → = (2-23) i L f i Hx ˆ = (T, P 一定, xi → 0 ) (2-24) ˆ f i xiH L i = (2-25) ( ) = = c i 1 i ln i n RT E G (2-26) i ln j i RT n G T ,P,n Ei = (2-27) 2 1 2 1 2 1 2 2 1 2 2 21 2 1 2 1 1 2 1 1 1 + = + = A x A x A ln A x A x A ln ( ) ( ) 21 12 21 2 2 12 21 12 1 2 1 2 ln 1 = x2 A + 2 A − A x ln = x A + 2 A − A x − = k j j j k i j j k x k x ln i x j 1-ln exp ( ) RT v v L ij ii i L j ij = − − = + − k k kj l j l j l l i j k k ki j i j k k ki j j i j i j i G x G x G x x G G x G x ln ij = (gij − gij) RT ( ) ij ij ij G = exp − gij − gij = = + + 2 + B 1 v C RT v Pv Z (2-28)
P =1+Bp+Cp ln=2∑y:B1 (2-30) RT y: Bii-Inz (2-31) B=∑∑,,B (2-32) (2-33) ∑yP ∑yT K yy,P gi ④P (2-35) RT exp RT RT>>v(P-PS) K1=P5/ (2-36) Vi K=lip P ni pix Vi (2-39) P5④ P K P exp 2-40)
= = 1+ BP + CP 2 + RT Pv Z (2-29) RT P ˆ B = − = C j 1 lni 2 y iB ij (2-30) = = − C j 1 i i ij ln 2 ln ˆ y B Z v (2-31) = = = c i 1 c i 1 B yi yj Bij (2-32) RT v Pv Z B = = 1+ (2-33) = = c i 1 i ci c i 1 i ci 2 y T y P T P (2-34) ( ) − = = RT S i L i V i S i S i i i i i exp V P p ˆ P P x y K (2-35) ( ) exp 1 S i L i − RT V P p ( ) S P pi RT v L i − K P P S i = i (2-36) i S i i x p p y = (2-37) p p K S i i i = (2-38) p p x y i S i i i = (2-39) ( ) − = RT S i L i V i S i S i i exp V P p ˆ P P K (2-40)
K,=fl/f (2-41) K Pd「-p (2-43) ①P RT 1=K1x1(=1,2…c ∑y xi K:=f(P, T, x, y) lnk1=A1-B1/(+C1) lnk1=A1-B1/(T+18-0.197) (2-49) K 设T一→>由P下K图查K一∑kx-1m)≤→一结束 调整T
V i L i i K = f f (2-41) L i i L i f x f ~ = (2-42) ( ) − = RT S i L i V i S i S i i i exp V P p P P K (2-43) yi = Ki xi (i =1,2, c) (2-44) = = c i 1 yi 1 (2-45) = = c i 1 xi 1 (2-46) Ki = f(P,T,x, y) (2-47) lnKi = Ai − Bi (T +Ci ) (2-48) lnKi = Ai − Bi (T +18 −0.19Tb ) (2-49) = = c i 1 Ki xi 1 (2-50) ( ) -1 0 c i 1 i i = f T = K x = (2-51) 设 T ⎯给定P ⎯→ 由 P-T-K 图查 Ki → = c i 1 i i K x → ︳ f(T) ︱≤ε ⎯⎯Y→ i x T →结束 N 调整 T i K i i y = K • • x (2-52)