1-1-7在一定质量的硅试样内和300g铁液混合,用量热计测得加人的硅量为0.540g时,混合热为809Jmol-;试样温度为298K,熔体温度1873K;硅在1873K时的Hs=91.1kJmol-。试求硅的偏摩尔恰H和AH。解在恒温、恒压下,溶液中加人无限小量的组分B,而其他各组分的物质的量不发生变化时,则溶液熔的变化称为偏摩尔恰Hofg = (afr)dnT.P.nKAR相对偏摩尔恰AH则是溶液的偏摩尔恰与组分B的纯物质的摩尔恰H之差值:AH=H-H:相对偏摩尔恰AH又称为组分B的溶解热,而溶液的相对总摩尔熔即是溶液的生成热。在量热计中,加人的硅试样和300g铁混合时,测得的热效应为809J,是硅由298K加热到1873K的熔变化及形成的溶液的生成热之和。由于试样的加人(0.540g)远比铁溶剂的量(300g)小得多,可视为加入的硅的量是无限小的,而测出的混合热近似等于硅的偏摩尔焰,即QM809x28H=-=-41948J·mol-10.540msiAH,=H-H=-41948-91100=-133048J·mol-t1-1-8Fe-Si液中,(1600℃)=0.0013,(1420℃)=0.00047。试求1600℃时硅溶于铁液中形成稀溶液的相对偏摩尔焰AHS解利用教材式(1-49),可得In Yra(÷-)YTU)0.0013故H=RIn/ 1. 471g. 001/(-149207J·mol-1(18731673YTi另外,还可用教材式(1-46)求AH(alnysAHg = - RT)(aTAina_ ln0.0013 n.00047(alnys而= 0.00246AT18731693aTERT+ = 1873 1693 - 17832所以AH=-19.147×(1783)×0.00246=-149740J·mol1-1-9在1873K时,Fe-Ni系内×[Ni] =0.6,=0.82;×[Fe]=0.4,=0.88,而AH%=-4704J·mol-";AH=-4462J·mol-。试求溶液的超额热力学函数。解C=AC-ACmR)=RT(xpInare+xn.Inan-InxFe-Xilnxm)= 19.147 ×1873 × [0.4lg(0.4 ×0. 88) +0. 6lg(0. 6 ×0. 82) 0.4)g0.4 0.6lg0.6]=19. 147 ×1873 ×[0.4 × (-0.453) +0.6 × (- 0.308)-0.4×(-0.398)= 0.6× (-0.222)=-2639J·mol-.6
H=AH=xAH+xAH%=0.4×(-4462)+0.6×(-4704)=4607J·mol-AH-AG= [- 4607 - (- 2639)]/1873 = - 1. 05J·mol-.K-lSu=TGr=RTln%p。= 19. 147×1873lg0.88 =- 1991 Jmol-1C%=R7inr= 19.147×18731g0.82=-3090J·mol-tH=AH,=-4462.H=AH=-4704J-mo1-H-G= - 4462 - (- 1991)= -1.32JmolKSaT1873S-Cm4704-(3090)=-0.86J-mol-"·KT18731-1-101823K时,Fe-Cu系内,Cu以纯铜为标准态的活度系数与x[Fe]的关系为Igcu=1.45(x[Fe])?-1.86(x[Fe])"+1.41(x[Fe])*,而%=10.1。试计算w[Cu]=0.5,1.0,1.5,2.0,2.5以质量1%溶液为标准态的活度ac%)。解这是把aca(R)转换为aa(%)的计算,所用公式为M.aCa(%) = Acu(R)(100M.55.85(100×63.55×10.1) = 11.27αca(R)ac(%) = acal而aca(R) = c*[Cu]55.85[Cu] = 1005 * w[Cu]1gyc=1.45(x[Fe])"-1.86(x[Fe])3+1.41(x[Fe]))对于w【(u]=0.5%的计算值如下:55. 85 × 0.5= 4. 4 × 10-3x[Cu] =100 × 63.55x[Fe] = 1 - x[Cu] = [ - 0. 0044 = 0. 99561gcu= 1. 45 × 0. 9956*- 1. 86 ×0.9956° +1.41 × 0. 9956= 0.987,c= 9.70ac(%)=11.27×9.70 ×4. 4 ×J0-= 0. 48其余[Cu]的ac()值见表1-6。表1-6铜的活度0.51.01.52.02.5w [Cu] /%1. 8 ×10 -24. 4 ×10 -58. 8 ×10 -31.3 ×10 -22. 2 ×10 -2x[Cu]0.99560.99120.9870.9820.978x[Fe]9.709.439.178.658, 87Yca1.341.802.140. 480.94fCu(K):7:
1-1-11在1873K时,Fe-Cu系内铜的蒸气压的测定值见表1-7。纯铜蒸气压的温度关系式为lgp=[5919/T-6.636。Pe的单位为Pa。(1)给出×Cu】=0~1范围内的饱和蒸气压曲线,并标示亨利定律及拉乌尔定律;(2)计算铜以纯铜,假想纯铜及质量1%溶液为标准态的活度及活度系数。表1-7Fe-Cu系内Cu的蒸气压x [Cu]0.0150. 0610.0230.2170. 4670, 6260.7920.883pia/Pa8.713.330.953.259. 863. 464, 767.2解(1)由表值绘出1873K时,Fe-Cu系的pc25【Cu】关系图(图1-3)。实际溶液的蒸气压对拉乌尔定律成正偏差,对亨利定律成负偏差。(2)1873K时,纯铜的蒸气压为15919Igpo =6.636 = 1.863, Pc= 72.94PaL1873E1)纯物质标准态:Pc=72.94。2)假想纯物质标准态:Kn)。由于难以作出从x[Cu】=0处曲线的切线在×【Cu]=1处的截距,就难以由此得出Kx)。现由溶液的acau(R-【Cu]图或c**【Cu】图,用外推法求得=7.93,而KHx) = Ycupc = 7. 93 × 72. 94 = 578. 413)质量1%溶液标准态:Kg(%)。MeKh(%) =KH() ×100Mc0.406oTCx[Cu]55.85=578.41X=5.08图1-3pa-[Cu]关系100×63.553种标准态的活度及活度系数的计算式为91.0930.80gosf1040.4H0.20.20.40.60.8100.20.40.60.81.0x[Cu]r[Cu]图1-4acu(R)=x [Cu]】 关系图1-5ca-[Cu]关系-8
pcuPcP'oGcu(R)72. 94 ° Ycv = 72. 94x[ Cu]PaPcuPcuPc.378.41 fo = 578. 41[ cu]ace(w)Kat)PaPcPon5.08:Jaac(%)5.08w[Cu]KHS)而w【Cu]可用下式得出:100100w[Cu],=”Met0.879/x[ Cu] + 0. 1211Me-)+(1Mcax*[Cu]Mo各项计算值见表1-8。表1-83种标准态下铜的活度及活度系数0.2170.4670.6260.792x[Cu]0.0150.0230.0610. 883Pi/Pa8.713.330.953. 259.864.767.263. 40. 7190. 1820. 4240. 7290. 8200. 8690.8870. 92ACo(R)7.957.916.953.361.761.391. 121.04Ycu0.01650.0250.0580.1010. 1130.1200.1220.127αCut H)1. 091.0940. 9510. 4640.2420. 1920.1550.144fca(H)1. 712. 6186. 0810.4711. 7712. 7413. 2312. 48acu(8)w[Cu]a1. 702.616.8823.9850.065. 5781.2489. 561. 011.000.880.440.240. 190. 160.15fea(%)1-1-12实验测得1873K时,铬在铁及银液中的分配浓度如表1-9所示,试求铁液中铬的活度。表1-9Fe-Ag系内铬的平衡分配浓度3.93x(Cr[Fe]) × 1021.877.769.8214.7915.9719.5624.1830.2549.30(Cr[Ag]) × 1020.0590.0100. 0290.1100.1400.1700.2800.3700.4100.510解由分配定律得ac[Pa) =aG(Ag) / LG由表1-9可见,银液中Cr的平衡浓度很低,位于稀溶液浓度范围内,故可认为αcLAgl=x(Cr[Ag】),因而有x(Cr[ Ag])aclre)=LceLc分配常数可由【Cr】位于两者的稀溶液内的平衡浓度求得。即.9
[x(Cr[Ag])Le=limlLl=x(Cr[Fel)FfL的计算值见表1-10。由lgLc-x[Cr]作图,-174由图中曲线外推到x(Cr【Fe])=0时,得到~2.00P18IgLa= IgLe= - 2.132.25Lc= 7.413× 10-3而2.50101320253035x(Cr[Ag])acFa) =x[Crx1027.413×10-图1-6gLo-x[Cr】图铬浓度的活度及相关计算值见表1-10。表1-10L及ac的计算值1. 873. 939, 8214. 7915.9719.5624.1830.2549. 30x (Cr [Fe])×1027. 760.0100.0290.0590.1100.1400. 1700.2800. 3700.4100.510(Cr[Ag])×1021.01x5.3 x7.38 ×7.6x1.12 ×9.4 x1.06 ×1.5x1.4x1.0x-*(Cr [Ag])Lo10-110~310-310 -210-310-210~210-210-210~2(CrlFe)igle2. 121.952. 032.02.01.82-1.85-2. 02.28°2. 130.0390. 1880.2290.5530.0130.080.1480.3780.4990.688ac(Fe)1-1-13在1873K时与纯氧化铁渣平衡的铁液的氧的质量分数为0.211%。与组分为w(Ca0)=39.18%,w(Mg0)=2.56%,w(Si0,)=39.76%,w(Fe0)=18.5%的熔渣平衡的铁液的氧的质量分数为0.048%。试计算熔渣中Fe0的活度及活度系数。解氧在熔渣与铁液间的反应为(FeO) [O] +[Fe]氧以不同形式在铁液与熔渣间的分配常数为Ly=40ao而uaro1o-0.211Lo== 0.211对于纯氧化铁渣1areo与熔渣平衡的铁液au=w0]=0.0480. 048ao故=0.227ara=0.211L.w[o]0.0480. 227又YEeoLor(FeO)0.211x(Fe0)x(FeO)x(Fe0)可根据100g熔渣组分的物质的量得出:39.1839.76= 0.663n(CaO) == 0.700, n(Si0,) =5660-10