3.051/BE.340 第17讲药物传输:控制释放 我们所指的“控制释放”是什么? 控制:1输送速率 2释放位置/作用点 控制的需要 传统的药物输送 药物浓度 中毒 浓度 药物有效浓度范围 用药的间 剂效的较长范围=毒性风险
1 3.051/BE.340 第 17 讲 药物传输:控制释放 我们所指的“控制释放”是什么? 控制: 1.输送速率 2.释放位置/作用点 控制的需要 传统的药物输送 t 1 用药时间 t2 剂效的较长范围 = 毒性风险 药物浓度 中毒 浓度 药物有效浓度范围
3.051/BE.340 药物浓度 控制药物输送 中恋 浓度 ..-.--药泣疗效浓度 用药闻 装置种类 1.扩散控制型释放装置 单块装置 膜控制装置 渗透压装置 溶胀-控制装置 2.化学控制方式 基质侵蚀型 侵蚀/扩散复合型 药物与聚合物形成共价键型 吸附药物解吸型 3.电子/外部控制装置
2 3.051/BE.340 药物浓度 控制药物输送 用药时间 装置种类: 1. 扩散控制型释放装置 z 单块装置 z 膜控制装置 z 渗透压装置 z 溶胀-控制装置 2. 化学控制方式 z 基质侵蚀型 z 侵蚀/扩散复合型 z 药物与聚合物形成共价键型 z 吸附药物解吸型 3. 电子/外部控制装置 中毒 浓度 药物治疗有效浓度
3.051/BE.340 1.扩散控制装置 a)单片型装置 药物从聚合物基质中扩散释放出来 释放速率取决于初始药物药物浓度 i)C<Cs的情况 (药物浓度C低于药物在基质中的溶解度Cs) →通过基质的扩散过程,控制释放速率 我们如何控制释放速率? 通过选择基质达到速率控制的目的 玻璃态基质:D~10-0-10-cm2/s 橡胶态基质:D~100-10cm2/s
3 3.051/BE.340 1. 扩散控制装置 a).单片型装置 药物从聚合物基质中扩散释放出来 释放速率取决于初始药物药物浓度 ⅰ)C<Cs 的情况 (药物浓度 C 低于药物在基质中的溶解度 Cs) ⇒ 通过基质的扩散过程,控制释放速率 我们如何控制释放速率? 通过选择基质达到速率控制的目的: 玻璃态基质:D~10-10-10-12cm2 /s 橡胶态基质:D~10-6-10-7cm2 /s
3.051/BE.340 量化药物释放 符合Fck定律 对于1D:药物通量:J=-D x aC、a2C 药物浓度随时间的变化为 D 我们需要计算 dMdt=释放速率 ●M1=t时间释放量 →解决Fick第二定律关于初始和界面条件问题 举例:对于一个装载有初始浓度为C。的1D板,溶液中的药物浓度,恒定的表面浓度为C1 I.C.: C(x,0)=Co B.C.1 0 BC.2:C(2,)=C
4 3.051/BE.340 量化药物释放 符合 Fick 定律 我们需要计算: z dM/dt = 释放速率 z Mt = t 时间释放量 ⇒解决 Fick 第二定律关于初始和界面条件问题 举例:对于一个装载有初始浓度为 Co 的 1D 板,溶液中的药物浓度,恒定的表面浓度为 Ci 对于 1D:药物通量 J: 药物浓度随时间的变化为:
3.051/BE.340 药物释放的数量由一系列溶液给出 D(2n+1)丌 exp n0(2m+1)丌 其中:M=在长时间药物释放量(c/b为总药物量) 6=板厚度 M/Moo 0.5 0 时间 释放速率(引申出): 1/2 dM 2M 短时间:~t2 dM 8DM -丌Dt 长时间:指数式衰减 2exp
5 3.051/BE.340 药物释放的数量由一系列溶液给出: 其中: M∞=在长时间药物释放量(c/b 为总药物量) δ=板厚度 时间 释放速率(引申出): 短时间:~t -1/2 长时间:指数式衰减