第7章。信的状太景分挤 6.状态轨迹 在描述一个动态系统的状态空间中,状态向量的 端点随时间变化所经历的路径称为系统的状态轨迹。 个动态系统的状态轨迹不仅取决于系统的内部结构, 还与系统的输入有关,因此,系统的状态轨迹可以形 象地描绘出在确定的输入作用下系统内部的动态过程 《信号与线性糸统》
《信号与线性系统》 第7章 系统的状态变量分析 6.状态轨迹 在描述一个动态系统的状态空间中,状态向量的 端点随时间变化所经历的路径称为系统的状态轨迹。 一个动态系统的状态轨迹不仅取决于系统的内部结构, 还与系统的输入有关,因此,系统的状态轨迹可以形 象地描绘出在确定的输入作用下系统内部的动态过程
第7。信的状太变景分挤 71.2系统的状态变量描述 1.状态方程 对于一个有m个输入f(t),f2(t),…,fn(t),L个输出 y1(t),y2(t),…,y1(t)的连续时间系统(如图7.1所示,假 设能充分描述该系统的n个状态变量为λ1(t)2(t),…, λn(t),则每个状态变量在任何时刻t的一阶导数可表示 为该时刻的n个状态变量和m个输入的一个函数,即 《信号与线性糸统》
《信号与线性系统》 第7章 系统的状态变量分析 7.1.2 系统的状态变量描述 1.状态方程 对于一个有m个输入f1 (t),f2 (t),…,fm(t),L个输出 y1 (t),y2 (t),…,yL (t)的连续时间系统(如图7.1所示),假 设能充分描述该系统的n个状态变量为λ1 (t)λ2 (t),…, λn (t),则每个状态变量在任何时刻t的一阶导数可表示 为该时刻的n个状态变量和m个输入的一个函数,即
第7综的状杰安量分挤 A1+a122+…+a1n2n+b1f+b22+…+bm 12=a2141+a22+…+a22n+b2f1+b22+…+b2mfm(7-2 n=an1+an212+…+amnn+bnf1+bf2+…+bnm fi(t 1(t) f(t) 0 图71多输入一输出连续时间系统 《信号与线性糸统》
《信号与线性系统》 第7章 系统的状态变量分析 1 11 1 12 2 1 11 1 12 2 1 2 21 1 22 2 2 21 1 22 2 2 1 1 2 2 1 1 2 2 n n m m n n m m n n n nn n n n nm m a a a b f b f b f a a a b f b f b f a a a b f b f b f = + + + + + + + = + + + + + + + = + + + + + + + (7―2) 图7.1 多输入―输出连续时间系统 {i (t 0 … )} … f 1 (t) f 2 (t) f m (t) y1 (t) y2 (t) y L (t)
第7章。信的状太景分挤 系统的状态方程也可以用矢量矩阵的形式来表示,即 13 h2…b3)‖f 22 b23‖2(7-3) 33 3儿Lf 上式可简记为 (t)=AA(1)+Bf(t) 4 《信号与线性糸统》
《信号与线性系统》 第7章 系统的状态变量分析 系统的状态方程也可以用矢量矩阵的形式来表示,即 1 1 11 12 13 11 12 13 1 2 21 22 23 2 21 22 23 2 31 32 33 31 32 33 3 n n a a a b b b f a a a b b b f a a a b b b f = + (7―3) 上式可简记为 ( ) ( ) ( ) t A t Bf t = + (7―4)
第7章。信的状太景分挤 2.输出方程 同样,对于系统的L个输出y(),y2(t,…,y1(t), 也可以用n个状态变量和m个输入的函数来表示,其矩 阵形式可写为 2 13 2 λ+|b,b 22 ff 33 y(t=ca(t)+Df(t) 7 《信号与线性糸统》
《信号与线性系统》 第7章 系统的状态变量分析 2.输出方程 同样,对于系统的L个输出y1 (t),y2 (t),…,yL (t), 也可以用n个状态变量和m个输入的函数来表示,其矩 阵形式可写为 1 1 1 11 12 13 11 12 13 2 21 22 23 2 21 22 23 2 3 3 3 31 32 33 31 32 33 y f a a a b b b y a a a b b b f y f a a a b b b = + (7―5) y t C t Df t ( ) ( ) ( ) = + (7―6)