系数线性方程的解法。 (支撑毕业要求1-1指标点) 2.能力要求:了解并适度掌握数学模型的基本综合知识,具备分析问题、解决问题的能力。 3.素质要求:具备初步的抽象概括问题的能力、自主学习的能力以及一定的逻辑推理能力。 三、教学内容 第一章函数与极限 1.基本内容: 函数概念、函数的性质,复合函数:极限,左右极限,无穷小量,无穷大量,极限的四则 运算,两个极限存在准则,两个重要极限:连续性,连续函数的运算性质,基本初等函数和闭 区间上连续函数的性质(最大值,最小值定理和介值定理)。 2.教学基本要求: 理解函数的概念,函数在一点连续的概念:熟悉基本初等函数的性质及其图形:了解反函 数、复合函数概念,极限的e-N,E-6定义(对于给出e求N或6不作过高要求),并能在学 习过程中逐步加深对极限思想的理解,两个极限存在准则,无穷小、无穷大概念,初等函数的 连续性:掌握极限四则运算法则及无穷小的比较:知道在闭间区上连续函数的性质:会用两个 重要极限求极限,会判断间断点的类型,能列出简单实际问题中的函数关系 3.教学重点难点: 函数的概念:连续函数的性质:两个重要极限求极限,判断间断点的类型,列出简单实际 问题中的函数关系:难点为函数极限的:-N,E-6定义。 4.教学建议:函数极限的e-N,E-6定义不作考试要求。 第二章导数与微分 1.基本内容: 导数概念,导数的几何意义,可导性与连续性之间的关系,导数的运算法则(四则运算、 复合运算、求反函数导数法则),基本初等函数的导数公式,高阶导数,隐函数的导数,对数 求导法,由参数方程所确定的函数的导数,微分概念及其运算法则。高阶导数的概念,高阶导 数的运算法则,参数方程及隐函数的高阶导数。 2.教学基本要求 理解导数和微分概念:熟悉导数和微分的运算法则和导数的基本公式,熟练地求初等函数 的一阶,二阶导数:了解导数的几何意义,函数的可导性与连续性的关系,高阶导数概念:掌 握隐函数和参数式所确定的函数的一阶、二阶导数的求法。 3.教学重点难点: 2
系数线性方程的解法。(支撑毕业要求 1-1 指标点) 2. 能力要求:了解并适度掌握数学模型的基本综合知识,具备分析问题、解决问题的能力。 3. 素质要求:具备初步的抽象概括问题的能力、自主学习的能力以及一定的逻辑推理能力。 三、教学内容 第一章 函数与极限 1.基本内容: 函数概念、函数的性质,复合函数;极限,左右极限,无穷小量,无穷大量,极限的四则 运算,两个极限存在准则,两个重要极限;连续性,连续函数的运算性质,基本初等函数和闭 区间上连续函数的性质(最大值,最小值定理和介值定理)。 2.教学基本要求: 理解函数的概念,函数在一点连续的概念;熟悉基本初等函数的性质及其图形;了解反函 数、复合函数概念,极限的ε-N,ε-δ定义(对于给出ε求 N 或δ不作过高要求),并能在学 习过程中逐步加深对极限思想的理解,两个极限存在准则,无穷小、无穷大概念,初等函数的 连续性;掌握极限四则运算法则及无穷小的比较;知道在闭间区上连续函数的性质;会用两个 重要极限求极限,会判断间断点的类型,能列出简单实际问题中的函数关系。 3.教学重点难点: 函数的概念;连续函数的性质;两个重要极限求极限,判断间断点的类型,列出简单实际 问题中的函数关系;难点为函数极限的ε-N,ε-δ定义。 4.教学建议:函数极限的ε-N,ε-δ定义不作考试要求。 第二章 导数与微分 1.基本内容: 导数概念,导数的几何意义,可导性与连续性之间的关系,导数的运算法则(四则运算、 复合运算、求反函数导数法则),基本初等函数的导数公式,高阶导数,隐函数的导数,对数 求导法,由参数方程所确定的函数的导数,微分概念及其运算法则。高阶导数的概念,高阶导 数的运算法则,参数方程及隐函数的高阶导数。 2.教学基本要求: 理解导数和微分概念;熟悉导数和微分的运算法则和导数的基本公式,熟练地求初等函数 的一阶,二阶导数;了解导数的几何意义,函数的可导性与连续性的关系,高阶导数概念;掌 握隐函数和参数式所确定的函数的一阶、二阶导数的求法。 3.教学重点难点: 2
理解导数和微分概念,函数的可导性与连续性的关系高阶导数的概念,高阶导数的运算 法则。高阶导数概念,导数的几何意义:难点为高阶导数,参数方程及隐函数的高阶导数。 4.教学建议:微分在近似计算中的应用不作考试要求。 第三章微分中值定理与导数的应用 1.基本内容: 罗尔定理,格朗日定理,柯西定理,带有拉格朗日余项的泰勒公式。导数的应用,罗必达 法则,函数增减性判定法,函数的极值及其求法,最大值,最小值问题,函数图形的凹凸及其 判定法,拐点及其求法,水平与垂直渐连线,函数图形的描绘,弧微分,曲率定义及其计算公 式与曲率半径。 2.教学基本要求: 理解罗尔定理,拉格朗日定理,函数的极值概念:熟悉柯西定理、泰勒定理:掌握求函数的 极值,判断函数的增减性与函数图形的凹凸性,求函数图形的拐点的方法:知道曲率和曲率半 径的概念:能用导数描述一些物理量,会应用拉格朗日定理,能描绘函数的图形,会解数简单 的最大值和最小值问题,会计算曲率和曲率半径。 3.教学重点难点: 掌握函数的极值的计算方法,判断函数的增减性与函数图形的凹凸性,求函数图形的拐点 的方法。熟悉函数图形的描绘。难点为柯西定理、泰勒定理:曲率和曲率半径的计算:函数作 图。 4.教学建议:泰勒公式不作考试要求。 第四章不定积分 1.基本内容: 不定积分的概念,性质,基本积分公式,换元积分法,分部积分法,有理函数、三角函数 有理函数及简单的无理函数的积分举例。 2.教学基本要求: 理解不定积分的概念和性质,掌握基本积分公式,换元积分法,分部积分法:了解有理函 数的积分,可化为有理函数的积分。 3.教学重点难点: 不定积分的概念,性质,基本积分公式,换元积分法,分部积分法。第二类换元积分法, 有理函数积分法, 4.教学建议:对于有理函数积分,只要求学生学会最简单的有理函数积分。 3
理解导数和微分概念,函数的可导性与连续性的关系;高阶导数的概念,高阶导数的运算 法则。高阶导数概念,导数的几何意义;难点为高阶导数,参数方程及隐函数的高阶导数。 4.教学建议:微分在近似计算中的应用不作考试要求。 第三章 微分中值定理与导数的应用 1.基本内容: 罗尔定理,格朗日定理,柯西定理,带有拉格朗日余项的泰勒公式。导数的应用,罗必达 法则,函数增减性判定法,函数的极值及其求法,最大值,最小值问题,函数图形的凹凸及其 判定法,拐点及其求法,水平与垂直渐连线,函数图形的描绘,弧微分,曲率定义及其计算公 式与曲率半径。 2.教学基本要求: 理解罗尔定理,拉格朗日定理,函数的极值概念;熟悉柯西定理、泰勒定理;掌握求函数的 极值,判断函数的增减性与函数图形的凹凸性,求函数图形的拐点的方法;知道曲率和曲率半 径的概念;能用导数描述一些物理量,会应用拉格朗日定理,能描绘函数的图形,会解数简单 的最大值和最小值问题,会计算曲率和曲率半径。 3.教学重点难点: 掌握函数的极值的计算方法,判断函数的增减性与函数图形的凹凸性,求函数图形的拐点 的方法。熟悉函数图形的描绘。难点为柯西定理、泰勒定理;曲率和曲率半径的计算;函数作 图。 4.教学建议:泰勒公式不作考试要求。 第四章 不定积分 1.基本内容: 不定积分的概念,性质,基本积分公式,换元积分法,分部积分法,有理函数、三角函数, 有理函数及简单的无理函数的积分举例。 2.教学基本要求: 理解不定积分的概念和性质,掌握基本积分公式,换元积分法,分部积分法;了解有理函 数的积分,可化为有理函数的积分。 3.教学重点难点: 不定积分的概念,性质,基本积分公式,换元积分法,分部积分法。第二类换元积分法, 有理函数积分法。 4.教学建议:对于有理函数积分,只要求学生学会最简单的有理函数积分。 3
第五章定积分 1.基本内容: 定积分概念、性质,积分变上限的函数及其求导定理,牛顿一莱布尼兹公式,定积分的换 元法与分部积公法,广义积分,定积分在几何学中的应用(面积、弧长、平行截面面积已知的 主体的体积)。 2.教学基本要求: 理解定积分的概念和性质,积分变上限的函数及其求导定理。熟悉牛顿一莱布尼兹公式, 定积分的换元法与分部积公法 3.教学重点难点: 定积分的概念,性质,基本积分公式,换元积分法,分部积分法:广义积分,定积分在几 何学中的应用。定积分的换元法与分部积公法及应用:难点为反常积分。 4.教学建议:反常积分的敛散性不应作为重点。 第六章定积分的应用 1.基本内容: 定积分的元素法:定积分在几何上的应用:平面图形的面积,特殊立体的体积,平面曲线 的弧长:定积分在物理上的应用。 2.教学基本要求: 熟练掌握利用定积分的微元法求解平面图形的面积,特殊立体的体积,平面曲线的弧长: 定积分在物理上的应用等实际问题。 3.教学重点难点: 定积分的微元法。利用微元法求解面积、体积。 4.教学建议:定积分的微元法应该重点讲解,并适当引申。 第七章常微分方程 1.基本内容: 微分方程的定义,阶、解、通解、初始条件,特解。变量可分离的方程,齐次方程,一阶 线性方程,伯努利方程和全微分方程。可降阶的高阶微分方程:y“=f(x)、y”=∫(x,y, y=∫(少,y)。线性微分方程的解的结构,二阶常系数齐次线性微分方程,二阶常系数非齐次 线性微分方程。 2.教学基本要求
第五章 定积分 1.基本内容: 定积分概念、性质,积分变上限的函数及其求导定理,牛顿一莱布尼兹公式,定积分的换 元法与分部积公法,广义积分,定积分在几何学中的应用(面积、弧长、平行截面面积已知的 主体的体积)。 2.教学基本要求: 理解定积分的概念和性质,积分变上限的函数及其求导定理。熟悉牛顿一莱布尼兹公式, 定积分的换元法与分部积公法。 3.教学重点难点: 定积分的概念,性质,基本积分公式,换元积分法,分部积分法;广义积分,定积分在几 何学中的应用。定积分的换元法与分部积公法及应用;难点为反常积分。 4.教学建议:反常积分的敛散性不应作为重点。 第六章 定积分的应用 1.基本内容: 定积分的元素法;定积分在几何上的应用;平面图形的面积,特殊立体的体积,平面曲线 的弧长;定积分在物理上的应用。 2.教学基本要求: 熟练掌握利用定积分的微元法求解平面图形的面积,特殊立体的体积,平面曲线的弧长; 定积分在物理上的应用等实际问题。 3.教学重点难点: 定积分的微元法。利用微元法求解面积、体积。 4.教学建议:定积分的微元法应该重点讲解,并适当引申。 第七章 常微分方程 1.基本内容: 微分方程的定义,阶、解、通解、初始条件,特解。变量可分离的方程,齐次方程,一阶 线性方程,伯努利方程和全微分方程。可降阶的高阶微分方程:y (n) =f(x)、 y′′ = f ( x, y′) , y′′ = f ( y, y′)。线性微分方程的解的结构,二阶常系数齐次线性微分方程,二阶常系数非齐次 线性微分方程。 2.教学基本要求: 4
熟练掌握变量可分离的方程及一阶线性方程的解法,二阶常系数齐次线性微分方程的解 法。了解微分方程、解、通解,初始条件和特解等概念,二阶线性微分方程解的结构。掌握自 由项为多项式,指数函数,正弦函数,余弦函数以及它们的乘积的二阶常系数非齐次线性微分 方程的解法。知道下列几种特殊的高阶方程y@=f(x),y=f(x,y),y=∫y,y)的解法, 微分方程的幂级数解法,高阶常系数齐次线性微分方程的解法。会识别下列几种一阶微分方程, 变量可分离的方程,齐次方程一阶线性方程,伯努利方程和全微分方程,会解齐次方程和伯努 利方程,会解较简单的全微分方程,会用微分方程解一些简单的几何和物理问题。 3.教学重点难点: 微分方程、通解的定义:一阶线性方程的解法,二阶常系数齐次线性微分方程的解法。微分方 程的求解。 4.教学建议:欧拉方程可以不讲 四、教学环节与学时分配 序 教学内容 课外辅导/ 必 其他 课外实践 注 时 第一章函数、极限、诈 0 2第二章导数与微分 1210 0 0 0 “其 第三章中值定理与导数 0 它” 3 12 的应用 4 第四章不定积分 10 8 式为 5第五章定积分 8 8 0 0 习题 6第六章定积分的应用 6 0 课 7第七章常微分方程 12 10 8 机动(阶段复习备用) 20 其计 8066 0 014 0 五、教学中应注意的问题: 通过教学要实现传授知识和发展能力两方面的教学目的,能力培养要贯穿教学全过程。教 学中注意满足不同层次学生的不同要求,积极为学生终身学习搭建平台、拓展空间。不仅把数 学课程当作重要的基础课和工具课,更将其视为一门素质课。教学中要结合教学内容及学生特 点,选择适宜的教学方法与教学手段,突出重点、化解难点,有意识、有目的、有重点地营造 有利于学生能力发展的氛围,启发学生思维,促进学生能力的提高。并通过教研活动统一教学 行为。 六、实验/实践内容:无
熟练掌握变量可分离的方程及一阶线性方程的解法,二阶常系数齐次线性微分方程的解 法。了解微分方程、解、通解,初始条件和特解等概念,二阶线性微分方程解的结构。掌握自 由项为多项式,指数函数,正弦函数,余弦函数以及它们的乘积的二阶常系数非齐次线性微分 方程的解法。知道下列几种特殊的高阶方程 y (n) =f(x), y′′ = f ( x, y′) ,y′′ = f ( y, y′)的解法, 微分方程的幂级数解法,高阶常系数齐次线性微分方程的解法。会识别下列几种一阶微分方程, 变量可分离的方程,齐次方程一阶线性方程,伯努利方程和全微分方程,会解齐次方程和伯努 利方程,会解较简单的全微分方程,会用微分方程解一些简单的几何和物理问题。 3.教学重点难点: 微分方程、通解的定义;一阶线性方程的解法,二阶常系数齐次线性微分方程的解法。微分方 程的求解。 4.教学建议:欧拉方程可以不讲。 四、教学环节与学时分配 序 号 教学内容 总 学 时 其 中 课外辅导/ 课外实践 备 讲课 实验 上机 其他 注 1 第一章 函数、极限、连 续 16 14 0 0 2 0 “其 它”主 要方 式为 习题 课 2 第二章 导数与微分 12 10 0 0 2 0 3 第三章 中值定理与导数 的应用 14 12 0 0 2 0 4 第四章 不定积分 10 8 0 0 2 0 5 第五章 定积分 8 8 0 0 0 0 6 第六章 定积分的应用 6 4 0 0 2 0 7 第七章 常微分方程 12 10 0 0 2 0 8 机动(阶段复习备用) 2 0 0 0 2 0 共 计 80 66 0 0 14 0 五、教学中应注意的问题: 通过教学要实现传授知识和发展能力两方面的教学目的,能力培养要贯穿教学全过程。教 学中注意满足不同层次学生的不同要求,积极为学生终身学习搭建平台、拓展空间。不仅把数 学课程当作重要的基础课和工具课,更将其视为一门素质课。教学中要结合教学内容及学生特 点,选择适宜的教学方法与教学手段,突出重点、化解难点,有意识、有目的、有重点地营造 有利于学生能力发展的氛围,启发学生思维,促进学生能力的提高。并通过教研活动统一教学 行为。 六、实验/实践内容:无 5
七、考核方式 考试采用闭卷考试形式。内容包括基本概念,基础理论,分析计算,题型分为填空、选择、 计算或解答题,证明等方式,题目的难易程度要视学生的实际情况而定。 总评成绩:平时学习过程的考核占30%,理论闭卷考试成绩占70%,其中平时学习过程包 括平时作业(占总成绩的20%),考勤(占总成绩的5%),课堂表现及课后互动(占总成绩的 5%)。 八、教材及主要参考书: 1、选用教材 《高等数学》(上下册,第七版)同济大学主编,高等教有出版社,2014年。 2、主要参考书: [山《高等数学》吴赣吕等,《数学物理方程》,中国人民大学出版社,2009年。 [2]《高等数学》上下册黄立宏等编,复且大学出版社,2009年。 []《数学分析》陈纪修,高等教育出版社,2005年。 4《数学复习指南》,陈文灯等编,世界图书出版社,2010年。 九、教改说明及其他:无 执笔人:黄宠辉系室审核人:廖茂新
七、考核方式: 考试采用闭卷考试形式。内容包括基本概念,基础理论,分析计算,题型分为填空、选择、 计算或解答题,证明等方式,题目的难易程度要视学生的实际情况而定。 总评成绩:平时学习过程的考核占 30%,理论闭卷考试成绩占 70%,其中平时学习过程包 括平时作业(占总成绩的 20%),考勤(占总成绩的 5%),课堂表现及课后互动(占总成绩的 5%)。 八、教材及主要参考书: 1、选用教材: 《高等数学》(上下册,第七版) 同济大学主编,高等教育出版社,2014 年。 2、主要参考书: [1] 《高等数学》吴赣昌等,《数学物理方程》,中国人民大学出版社,2009 年。 [2] 《高等数学》上下册黄立宏等编,复旦大学出版社,2009 年。 [3]《数学分析》 陈纪修,高等教育出版社,2005 年。 [4]《数学复习指南》,陈文灯等编,世界图书出版社,2010 年。 九、教改说明及其他: 无 执笔人:黄宠辉 系室审核人:廖茂新 6