第四章 导热问题 的数值解法
第四章 导热问题 的数值解法
1、重点内容: ①掌握导热问题数值解法的基本思路; ②利用热平衡法和泰勒级数展开法建立 节点的离散方程 2、掌握内容:数值解法的实质。 3、了解内容:了解非稳态导热问题的两 种差分格式及其稳定性
1 、重点内容: ① 掌握导热问题数值解法的基本思路; ② 利用热平衡法和泰勒级数展开法建立 节点的离散方程。 2 、掌握内容:数值解法的实质。 3 、了解内容:了解非稳态导热问题的两 种差分格式及其稳定性
求解导热问题实际上就是对导热微分方程在 定解条件下的积分求解,从而获得分析解。随着 计算机技术的迅速发展,对物理问题进行离散求 解的数值方法发展得十分迅速,这些数值解法主 要有以下几种: (1)有限差分法 (2)有限元方法 (3)边界元方法
求解导热问题实际上就是对导热微分方程在 定解条件下的积分求解,从而获得分析解。随着 计算机技术的迅速发展,对物理问题进行离散求 解的数值方法发展得十分迅速,这些数值解法主 要有以下几种: (1)有限差分法 (2)有限元方法 (3)边界元方法
分析解法与数值解法的异同点: 相同点:根本目的是相同的,即确定④ t=f(x,y,z);② 不同点:数值解法求解的是区域或时间空 间坐标系中离散点的温度分布代替连续的温 度场;分析解法求解的是连续的温度场的分 布特征,而不是分散点的数值
分析解法与数值解法的异同点: • 相同点:根本目的是相同的,即确定 ① t=f(x , y , z) ; ② 。 • 不同点:数值解法求解的是区域或时间空 间坐标系中离散点的温度分布代替连续的温 度场;分析解法求解的是连续的温度场的分 布特征,而不是分散点的数值
数值解法的实质 对物理问题进行数值解法的基本思路可以概括 为:把原来在时间、空间坐标系中连续的物理量的 场,如导热物体的温度场等,用有限个离散点上的 值的集合来代替,通过求解按一定方法建立起来的 关于这些值的代数方程,来获得离散点上被求物理 量的值。该方法称为数值解法。 这些离散点上被求物理量值的集合称为该物理 量的数值解
• 数值解法的实质 对物理问题进行数值解法的基本思路可以概括 为:把原来在时间、空间坐标系中连续的物理量的 场,如导热物体的温度场等,用有限个离散点上的 值的集合来代替,通过求解按一定方法建立起来的 关于这些值的代数方程,来获得离散点上被求物理 量的值。该方法称为数值解法。 这些离散点上被求物理量值的集合称为该物理 量的数值解