Case 1: At Equilibrium E=E0-(RT/n)In cri co) E-E0=-(RT/nF)In(Cr Co) E=EO SO, CR =C I= IA +Ic=0 no net current flows △G O R Reaction Coordinate
Case 1: At Equilibrium E = Eo - (RT/nF)ln(CR * /CO * ) E - E 0 = - (RT/nF)ln(CR * /CO * ) E = Eo so, CR * = Co * I = IA + IC = 0 no net current flows IA IC O R Reaction Coordinate G
Gase2AtE≤E gbm abm negative number (RT/nF)In(cr/ Co →ln(CR/C) is positive →C>C→ some o converted to r → net reduction passage of net reduction current △G R I=IA+IC<0 Reaction Coordinate
Case 2: At E < Eeqbm E - Eeqbm = negative number = - (RT/nF)ln(CR * /CO * ) ln(CR * /CO * ) is positive CR * > CO * some O converted to R net reduction passage of net reduction current IA IC O R Reaction Coordinate G I = IA + IC < 0
Case 2: At E> e gbm E-Eeabm positive number (RT/nF)In(cr/ Co →ln(CR/C) is negative →CR<Co→s0 mer converted to o → net oxidation passage of net oxidation current R △G O A+Ic>0 Reaction Coordinate
Case 2: At E > Eeqbm E - Eeqbm = positive number = - (RT/nF)ln(CR * /CO * ) ln(CR * /CO * ) is negative CR * < CO * some R converted to O net oxidation passage of net oxidation current IA IC O R Reaction Coordinate G I = IA + IC > 0