e Spreadsheet Formulation B E F G Unit Cost Sacramento Salt Lake City Rapid CityAlbuquerque Bellingham 5464 513 5654 Eugene 416 690 791 Albert Lea 59 682 538 665 10 Shipment Quantity 11( Truckloads) Sacramento Salt Lake Cit Rapid City Albuquerque Total Shipped 75 13(Cannery) 45 0 0 30 100 Total Received 16 四= Total Cost 17 Demand 85 5152535 Copyrigh2007c深圳大学管理学院运筹学21
Copyright 2007 © 深圳大学管理学院 运筹学 21 Spreadsheet Formulation
e Network Representation Supplies Demand Destinations Sources 464 D1)80(Sacr amento) (Bellingham) 75 D2)65(Salt Lake City (Eugene)125 690 91 682 (Rapid City) 388 (Albert Leayoo( S 685 D4)85(Albuquerque) Copyrigh2007c深圳大学管理学院运筹学2
Copyright 2007 © 深圳大学管理学院 运筹学 22 Network Representation
e呂输间题的阳络 ●忽略出发地和目的地在地理上的 布局 ●左边一列为出发地(S),旁边的数 字代表供应量 ●右边一列为目的地①D),旁边的 数字代表需求量 ●箭头表示可能的运输途径,其上 面的数字代表单位运输成本 Copyrigh2007c深圳大学管理学院运筹学3
Copyright 2007 © 深圳大学管理学院 运筹学 23 运输问题的网络表述 忽略出发地和目的地在地理上的 布局 左边一列为出发地(S),旁边的数 字代表供应量 右边一列为目的地(D),旁边的 数字代表需求量 箭头表示可能的运输途径,其上 面的数字代表单位运输成本
&e The Transportation Problem is an LP Let x the number of truckloads to ship from cannery i to warehouse j (15 设x;是从第个罐头加工厂运送到第个 仓库的车数)(=1,2,3;j=1,2,3,4) Minimize Cost =$464xu t S513xu t s654x13+s867x14+$352x21+$416x22 +s690x23+$791x24+$995 31 s682x32+$388x33+$685x34 Copyrigh2007c深圳大学管理学院运筹学24
Copyright 2007 © 深圳大学管理学院 运筹学 24 The Transportation Problem is an LP Let xij = the number of truckloads to ship from cannery i to warehouse j (假 设xij是从第i个罐头加工厂运送到第j个 仓库的车数) (i = 1, 2, 3; j = 1, 2, 3, 4) Minimize Cost = $464x11 + $513x12 + $654x13 + $867x14 + $352x21 + $416x22 + $690x23 + $791x24 + $995x31 + $682x32 + $388x33 + $685x34
&e The Transportation Problem is an LP subject to(约束) Cannery 1: u +x12 +x13+x14=75 Cannery2:x21+x22+x23+x24=125 Cannery3:x31+x32+x33+x34=100 Warehouse 1: xu+x21+x31=80 Warehouse 2: x1 +x22 +x32=65 Warehouse 3: X13+x23 +x33=70 Warehouse 4 24 x4=85 34 andx≥0(=1,2,33j=1,2,3,4) Copyrigh2007c深圳大学管理学院运筹学25
Copyright 2007 © 深圳大学管理学院 运筹学 25 The Transportation Problem is an LP subject to (约束) Cannery 1: x11 + x12 + x13 + x14 = 75 Cannery 2: x21 + x22 + x23 + x24 = 125 Cannery 3: x31 + x32 + x33 + x34 = 100 Warehouse 1: x11 + x21 + x31 = 80 Warehouse 2: x12 + x22 + x32 = 65 Warehouse 3: x13 + x23 + x33 = 70 Warehouse 4: x14 + x24 + x34 = 85 and xij ≥ 0 (i = 1, 2, 3; j = 1, 2, 3, 4)