重庆科技学院教案用纸 第3次课课题:流体及其主要性质流体运动的基本特性 本课的基本要求 1.理解流体上的作用力、能量、动量之间的关系。 2.了解流体流动的分类。 3.掌握层流、紊流、雷诺准数的表达式及物理意义 4.了解紊流特征。 、本课的重点难点 重点:流体流动的两种状态。 难点:层流、紊流的理解。 三、作业 四、教参及教具 1.《动量、热量、质量传输原理》髙家锐主编重庆大学出版社 2.胶片:图1-2-1图1-22 11.流体上的作用力、熊量、动量 作用力:表面力(作用在流体表面上,且与表面积成比例的力)和体积力作用在流体内部质 点上,与流体质量成比例的力) 压加(压强):运动静止流体,静压力。 特征:作用方向与作用面垂直,指向作用面,标量 切应力(粘性力):作用方向与表面平行,运动、流层间有速度差。 体积力(质量力):重力、惯性力、电磁力等。 位能:mgh 能量{动能:m2Nm/VNm/m2=Pa 静压能:PI 重力:mg 作用力惯性力: ma N/AN/m2=Pa 总压力:P.A 动量mNs/ArN.s/m2s=Pa 由以上分析可知: (1)mw/4r=作用力A=能量/ (2)作用力、能量、动量是同类物理量的不同表现形式。相互平衡、传递及转换,流体的动 量传输也就是力、能的平衡与转换的过程。 §1.2流体运动的基本特征 流体的运动特性,主要是指流体在流动条件下,其所具有的相关物理量在空间和时间上的 变化特性一流场持征 121流体流动的分类 自然流动:密度不同产生浮力 强制流动:流体因外力作用如风机、泵、喷射器等) 122流体流动的两种状态 第11页
重 庆 科 技 学 院 教 案 用 纸 第11页 第 3 次课 课题:流体及其主要性质 流体运动的基本特性 一、本课的基本要求 ⒈ 理解流体上的作用力、能量、动量之间的关系。 ⒉ 了解流体流动的分类。 ⒊ 掌握层流、紊流、雷诺准数的表达式及物理意义 ⒋ 了解紊流特征。 二、本课的重点、难点: 重点:流体流动的两种状态。 难点:层流、紊流的理解。 三、作业 P112 16 四、教参及教具 ⒈《动量、热量、质量传输原理》 高家锐主编 重庆大学出版社 ⒉ 胶片:图1-2-1 图 1-2-2 1.1. 流体上的作用力、能量、动量 作用力:表面力(作用在流体表面上,且与表面积成比例的力)和体积力(作用在流体内部质 点上,与流体质量成比例的力) 、 、 。 。 。 , 。 体积力 质量力 重力 惯性力 电磁力等 切应力 粘性力 作用方向与表面平行,运动、流层间有速度差 特征 作用方向与作用面垂直,指向作用面,标量 压力 压强 运动静止流体 静压力 ( ) : ( ) : : ( ) : 能量 = PV mw mgh 静压能: 动能: 位能: N m V N m m Pa 2 1 2 3 作用力 = P A ma mg 总压力: 惯性力: 重力: N A N m Pa 2 动量 mw Ns A N s m s Pa 2 = 由以上分析可知: ⑴ mw/A= 作用力/A= 能量/V ⑵ 作用力、能量、动量是同类物理量的不同表现形式。相互平衡、传递及转换,流体的动 量传输也就是力、能的平衡与转换的过程。 §1.2 流体运动的基本特征 流体的运动特性,主要是指流体在流动条件下,其所具有的相关物理量在空间和时间上的 变化特性—流场特征。 1.2.1 流体流动的分类 强制流动:流体因外力作用(如风机、泵、喷射器等) 自然流动:密度不同产生浮力 1.2.2 流体流动的两种状态
重庆科技学院教案用纸 1.流动状态 层流:所有流体质点只作沿同一方向的直线运动,无横向运动。如国庆大阅兵。 紊流:流体质点作复杂的无规则运动湍流。如自由市场。 从层流到紊流之间,一般称为过渡状态 实验观察:图1-2-1P11 「流速(w)↑、密度(p)↑、管径(d)个 粘度()↓ →有利于紊流的形成。 在实验的基础上,雷诺提出了确定两种状态相互转变的条件,雷诺准数R Be= pwd wd惯性力 粘性力 临界雷诺准数为Re:流体流动从种状态转变为另一种状态的雷诺准数Re 层流→紊流Reε=13800;紊流丶层流Rec=2300。 当Re<Re时,为层流状态 当Re>Re,时,为紊流状态 当Re下<Re<Re时,为过渡状态 般取Re=2300。 2.管流速度分布 层流:抛物线分布。 紊流:速度分布与Re有关。图1-22P13 3.紊流特征 脉动v2=0y 紊流流动时仅考虑时均速度wn、W,、w: 补充例题:流动状态的判断。 设水及空气分别在内径d=80m的管中流过,两者的平均流速相同,均为W=03ms,已知 水及空气的动力粘度各为u*=001gms,空=17×106kgms又知水及空气的密度各为p水 =100kgym3p=1293kg/m,试判断两种流体的流动状态。 解:按(1-2-1)式计算Re得: (1)水的Re数: pwd1000×0.3×0.08 =16000>2300紊流 0.0015 (2)空气的Re数 1.293×0.3×0.08 17×10=18252300 层流 Re<Rec层流Re>Rec紊流} 第12页
重 庆 科 技 学 院 教 案 用 纸 第12页 ⒈ 流动状态 层流:所有流体质点只作沿同一方向的直线运动,无横向运动。如国庆大阅兵。 紊流:流体质点作复杂的无规则运动(湍流)。如自由市场。 从层流到紊流之间,一般称为过渡状态。 实验观察:图1-2-1 P11 ( ) (w) ( ) (d) 粘度 流速 、密度 、管径 有利于紊流的形成。 在实验的基础上,雷诺提出了确定两种状态相互转变的条件,雷诺准数Re 粘性力 惯性力 = = = wd wd Re 临界雷诺准数为Rec:流体流动从一种状态转变为另一种状态的雷诺准数Re。 层流→紊流Rec上=13800;紊流→层流Rec下=2300。 当 时,为过渡状态 当 时,为紊流状态 当 时,为层流状态 下 上 上 下 c c c c Re Re Re Re Re Re Re 一般取 Rec= 2300。 ⒉ 管流速度分布 层流:抛物线分布。 紊流:速度分布与Re 有关。图1-2-2 P13 ⒊ 紊流特征 脉动 w x = 0 w y = 0 w z = 0 紊流流动时仅考虑时均速度 wx 、wy 、wz 。 补充例题: 流动状态的判断。 设水及空气分别在内径d=80 ㎜的管中流过,两者的平均流速相同,均为 W=0.3m/s,已知 水及空气的动力粘度各为μ水=0.0015kg/m.s,μ空气=17×10-6 kg/m.s 又知水及空气的密度各为ρ水 =1000kg/m3ρ空气=1.293kg/m3,试判断两种流体的流动状态。 解:按(1-2-1)式计算 Re 得: (1) 水的 Re 数: 16000 2300 0.0015 wd 1000 0.3 0.08 Re = = = 紊流 (2) 空气的 Re 数 1825 2300 17 10 1.293 0.3 0.08 Re 6 = = − 层流 {Re<Rec 层流 Re>Rec 紊流}
重庆科技学院教案用纸 第4次课课题:流体运动的基本特性 、本课的基本要求 1.了解连续介质、质点、微团、控制体的概念。 2.了解流场的分类,掌握欧拉法、拉格朗日法、流线概念。 3.了解流体流量的表示方法 4.掌握梯度、散度、旋度的定义、定义式、物理意义。 二、本课的重点、难点: 重点:流场的研究方法。 难点:梯度、散度、旋度的理解。 作 P11212. 四、教参及教具 1.《动量、热量、质量传输原理》高家锐主编重庆大学出版社 2.胶片:图1-24 1.23连续介质、质点、微、控制体 连续介质及质点 连续介质:将流体视为整体,内部不存在空隙的介质,由流体密度的定义加以说明。图1-24 P14流体看成是由质点在空间连续排列而无空隙。 质点:定义流体密度的最小体积单元,均性特征。 2.流体微团及控制体 流体微团(元体、微元体:由质点组成、比质点稍大的流体单元,均性特征。 微团:建立微分方程,微分解法。 控制体:流场中某一确定的空间区域 由微团组成,非均性特征 控制体建立积分方程,积分解法或近似积分解法。 124流体运动的研究方法 流场的定义{流体运动的全部范围 由无数多流体质点或微团运动所构成的空间 2.流场的研究方法 (1)欧拉法 同_瞬间全部流体质点的运动参量来描述,时间推进。u=∫(x,y,z,τ) 式中速度W压力P、密度o等。 (2)拉格朗日法 某个流体质点的运动参量随时间的变化规律为u=f(a,b,c,r) 式中a,b,c,τ某个质点的空间坐标位置,质点叠加,拉格朗日变数,x,y,z是a,b,c, r的函数。 3.流场的分类 (1)物理量是否随时间变化 稳定流场:v=f(x1y=),am/br=0,无质量动量蓄积/流动 定常流动 第13页
重 庆 科 技 学 院 教 案 用 纸 第13页 第 4 次课 课题:流体运动的基本特性 一、本课的基本要求 ⒈ 了解连续介质、质点、微团、控制体的概念。 ⒉ 了解流场的分类,掌握欧拉法、拉格朗日法、流线概念。 ⒊ 了解流体流量的表示方法。 ⒋ 掌握梯度、散度、旋度的定义、定义式、物理意义。 二、本课的重点、难点: 重点:流场的研究方法。 难点:梯度、散度、旋度的理解。 三、作业 P112 12. 四、教参及教具 ⒈《动量、热量、质量传输原理》 高家锐主编 重庆大学出版社 ⒉ 胶片:图1-2-4 1.2.3 连续介质、质点、微团、控制体 ⒈ 连续介质及质点 连续介质:将流体视为整体,内部不存在空隙的介质,由流体密度的定义加以说明。图1-2-4 P14 流体看成是由质点在空间连续排列而无空隙。 质点:定义流体密度的最小体积单元,均性特征。 ⒉ 流体微团及控制体 流体微团(元体、微元体):由质点组成、比质点稍大的流体单元,均性特征。 微团:建立微分方程,微分解法。 控制体:流场中某一确定的空间区域 由微团组成,非均性特征 控制体建立积分方程,积分解法或近似积分解法。 1.2.4 流体运动的研究方法 ⒈ 流场的定义 由无数多流体质点或微团运动所构成的空间。 流体运动的全部范围。 ⒉ 流场的研究方法 ⑴ 欧拉法 同一瞬间全部流体质点的运动参量来描述,时间推进。 u = f (x, y,z, ) 式中 u⎯速度W、压力P、密度等。 ⑵ 拉格朗日法 某个流体质点的运动参量随时间的变化规律为 u = f (a,b,c, ) 式中 a,b,c,⎯某个质点的空间坐标位置,质点叠加,拉格朗日变数,x,y,,z 是 a,b,c, 的函数。 ⒊ 流场的分类 ⑴ 物理量是否随时间变化 稳定流场: u = f (x, y,z),u = 0 ,无质量(动量)蓄积 定常流动 稳定流动
重庆科技学院教案用纸 不稳定流场:=f(xy,=,1),abr≠O,有质量动量蓄积不稳定流动 不定常流动 (2)物勿理量的性质:数量场:有大小、无前向,如温度、浓度 (3)空间:-维二维 维流场 4.流线及迹线 迹线:流体质点在空间运动的轨迹。拉格朗日法分析流场。 流线:同瞬间各流体质点运动方向的总和速度向量所构成的直线)。欧拉法分析流场 性质:各点的速度向量就是过该点的切线 流线不相交 稳定流动:重合 5.观察流体运动的方法流动显示技术 12.5流体的流量及流速 体积流量V质量流量M 重量流量G 3/s kg/s N/s G=Mg=pg 微元面流量d=dA断面流量=wd=i·A=i·A —平均流速,m/s。 1.2.6梯度、度、旋度 1.梯度 定义:表示各物理量随空间位置变化的程度,场中某物理量在空间上取值最大的方向导 数(单位距离上的变化量,即最大变化率 定义式: grad/(u)=g(u)= lim A (u) △n 式中u)速度、温度、浓度 梯度是矢量,增值方向为正。w,On,/oyan,/=V 2.散度 定义:散度是表示流体体积胪胀或收缩速率,即单位体积流体的体积流量。 dQ 定义式 dNw”〃≈,通量 dy aw aw a 说明:散度是标量{N>O正散度,膨胀 (2)各方向分速度在该方向上的变率之和 (3)p=cnst,dw=0,连续性方程 diyw=0连续(存在)y. (4)判断流场是否连续(存在)的依据。{dNW≠0不连续(不存在) 3.旋度 定义:表示流体旋转强度的一个运动参量,即单位面积上的环量涡量 第14页
重 庆 科 技 学 院 教 案 用 纸 第14页 不稳定流场: u = f (x, y,z, ),u 0 ,有质量(动量)蓄积 不定常流动 不稳定流动 ⑵ 物理量的性质: 向量场:有大小、有方向,如速度 数量场:有大小、无方向,如温度、浓度 ⑶ 空间:一维 二维 三维流场 ⒋ 流线及迹线 迹线:流体质点在空间运动的轨迹。拉格朗日法分析流场。 流线:同一瞬间各流体质点运动方向的总和(速度向量所构成的直线)。欧拉法分析流场 性质: 流线不相交 各点的速度向量就是过该点的切线 稳定流动:重合 ⒌ 观察流体运动的方法⎯流动显示技术 1.2.5 流体的流量及流速 体积流量V 质量流量M 重量流量G m3 /s kg/s N/s M =V G = Mg = gV 微元面流量 dV =w dA 断面流量 V w A w A A = = d V = w A w ⎯平均流速,m/s。 1.2.6 梯度、散度、旋度 ⒈ 梯度 定义:表示各物理量随空间位置变化的程度,场中某一物理量在空间上取值最大的方向导 数(单位距离上的变化量,即最大变化率)。 定义式: n f u n f u f u n = = → ( ) lim ( ) grad ( ) 0 式中 f(u)⎯速度、温度、浓度 梯度是矢量,增值方向为正。 wx w y x w z x w ⒉ 散度 定义:散度是表示流体体积膨胀或收缩速率,即单位体积流体的体积流量。 定义式: V Q V w w n V d d d div lim 0 = = → ,通量 z w y w x w w x y z + + div = 说明:⑴ 散度是标量 负散度,收缩 正散度,膨胀 div 0 div 0 w w ⑵ 各方向分速度在该方向上的变率之和 ⑶ = const ,div w = 0 ,连续性方程 ⑷ 判断流场是否连续(存在)的依据。 = div 0 ( ) div 0 ( ) 不连续 不存在 连续 存在 w w w ⒊ 旋度 定义:表示流体旋转强度的一个运动参量,即单位面积上的环量(涡量)
重庆科技学院教案用纸 w.dS 定义式: rot w= lim ,环量 Q rot w= y_ow=k Ox ay row=2o(角速度) V×w 说明:(1)旋度是矢量。 2判断动是否有旋的依据,{mW=0无旋流动,一般管流 row≠0有旋流动,风口循环区 维 0 [例1-2-]P23 第15页
重 庆 科 技 学 院 教 案 用 纸 第15页 定义式: = → S S 0 w S w lim d rot ,环量 k y w x w j x w z w i z w y w w z y x z y x − + − + − rot = rot w = 2 (角速度) w 说明:⑴ 旋度是矢量。 ⑵ 判断流动是否有旋的依据。 = 有旋流动,风口循环区 无旋流动,一般管流 w 0 w 0 rot rot 二维 = 0 − y w x wy x [例 1-2-1] P23