的结构,然后再介绍水的结构。 1.纯冰 冰是由水分子有序排列形成的结晶。水分子之间靠氢键连接在一起形成非常 稀疏(低密度)的刚性结构,这一点已通过ⅹ-射线、中子衍射、电子衍射、红外和 拉曼光谱分析研究得到阐明(图2-5)。最邻近的水分子的OO核间距为276A, O-OO键角约为109°,十分接近理想四面体的键角109°28。从图2-5可以看 出,每个水分子能够缔合另外4个水分子即1,2,3和W,形成四面体结构 所以配位数等于4。 图2-50℃时普通冰的晶胞(圆圈表示水分子中的氧原子) 当我们从顶部沿着C轴观察几个晶胞结合在一起的晶胞群时,便可看出冰 的正六方形对称结构,如图2-6a所示。图中W和最邻近的另外4个水分子显示 出冰的四面体亚结构,其中W、1、2、3四个水分子可以清楚地看见,第四个水 分子正好位于W分子所在纸平面的下面。当在三维空间观察图2-6(a)时即可得 到如图2-6(b)所示的图形。显然,它包含水分子的两个平面,这两个平面平行而 且很紧密地结合在一起,这类成对平面是由冰的基础平面组成。在压力作用下 冰“滑动”或“流动”时,如同一个整体“滑动”,或者像冰河中的冰在压力的 作用下所产生的“流动”。 452A b 图2-6冰的基础平面是由两个高度略微不相同的平面构成的结合体(圆圈代表水分子 的氧原子,空心和实心圆圈分别表示上层和下层的氧原子)(a)是沿c轴方向观察到的六 方形结构。(b)是基础平面的立体图
- 6 - 的结构,然后再介绍水的结构。 1. 纯冰 冰是由水分子有序排列形成的结晶。水分子之间靠氢键连接在一起形成非常 稀疏(低密度)的刚性结构,这一点已通过 X-射线、中子衍射、电子衍射、红外和 拉曼光谱分析研究得到阐明(图 2-5)。最邻近的水分子的 O—O 核间距为 2.76Å, O—O—O 键角约为 109º,十分接近理想四面体的键角 109º28'。从图 2-5 可以看 出,每个水分子能够缔合另外 4 个水分子即 1,2,3 和 W',形成四面体结构, 所以配位数等于 4。 图 2-5 0℃时普通冰的晶胞(圆圈表示水分子中的氧原子) 当我们从顶部沿着 C 轴观察几个晶胞结合在一起的晶胞群时,便可看出冰 的正六方形对称结构,如图 2-6a 所示。图中 W 和最邻近的另外 4 个水分子显示 出冰的四面体亚结构,其中 W、1、2、3 四个水分子可以清楚地看见,第四个水 分子正好位于 W 分子所在纸平面的下面。当在三维空间观察图 2-6(a)时即可得 到如图 2-6(b)所示的图形。显然,它包含水分子的两个平面,这两个平面平行而 且很紧密地结合在一起,这类成对平面是由冰的基础平面组成。在压力作用下, 冰“滑动”或“流动”时,如同一个整体“滑动”,或者像冰河中的冰在压力的 作用下所产生的“流动”。 图 2-6 冰的基础平面是由两个高度略微不相同的平面构成的结合体(圆圈代表水分子 的氧原子,空心和实心圆圈分别表示上层和下层的氧原子) (a) 是沿 c 轴方向观察到的六 方形结构。(b) 是基础平面的立体图 a b
几个基础平面堆积起来便得到冰的扩展结构。图27表示三个基础平面结合 在一起形成的结构,沿着平行C轴的方向观察,可以看出它的外形跟图2-6a所 表示的完全相同,这表明基础平面有规则地排列成一行。沿着这个方向观察的冰 是单折射的,而所有其他方向都是双折射的,因此,我们称C轴为冰的光轴。 图2-7冰的扩展结构(O和●分别表示基础平面的上层和下层氧原子) 早在50年代末期,曾有人用衍射方法研究含氘的冰结构,并确定了冰中氢 原子的位置,一般认为:1)在邻近的两个氧原子的每一条连接线上有一个氢原 子,它距离共价结合的氧为1±0.01A,距离氢键结合的氧为176±0.01A。这种 构象如图2-8(a)表示。2)如果在一段时间内观察氢原子的位置,可以得到与图 2-8(a)略微不同的图形。氢原子在两个最邻近的氧原子X和Y的连接线上,它可 以处于距离ⅹ轴1A或距离Y轴IA的两个位置。这正如鲍林所预言,后来为 Peterson等人所证实的那样,氢原子占据这两个位置的几率相等,即氢原子平均 占据每个位置各一半的时间,这可能是因为除了在极低温度以外水分子是可以协 同旋转的( cooperative rotation)。另外,氢原子能够在两个邻近的氧原子之间“跳 动”。通常我们把这种平均结构称为半氢、鲍林或统计结构。见图2-8(B)。 A 图2-8冰结构中氢原子(●)的位置(A瞬时结构;(B)平均结构(也称半氢() 鲍林或统计结构):O为氧原子 冰有11种结晶类型,普通冰的结晶属于六方晶系的双六方双锥体。另外, 还有9种同质多晶和1种非结晶或玻璃态的无定型结构,在常压和温度0℃时, 这11种结构中只有六方型冰结晶才是稳定的形式
- 7 - 几个基础平面堆积起来便得到冰的扩展结构。图 2-7 表示三个基础平面结合 在一起形成的结构,沿着平行 C 轴的方向观察,可以看出它的外形跟图 2-6a 所 表示的完全相同,这表明基础平面有规则地排列成一行。沿着这个方向观察的冰 是单折射的,而所有其他方向都是双折射的,因此,我们称 C 轴为冰的光轴。 图 2-7 冰的扩展结构 (O 和● 分别表示基础平面的上层和下层氧原子) 早在 50 年代末期,曾有人用衍射方法研究含氘的冰结构,并确定了冰中氢 原子的位置,一般认为:1) 在邻近的两个氧原子的每一条连接线上有一个氢原 子,它距离共价结合的氧为 1±0.01Å,距离氢键结合的氧为 1.76±0.01Å。这种 构象如图 2-8(a)表示。2) 如果在一段时间内观察氢原子的位置,可以得到与图 2-8(a)略微不同的图形。氢原子在两个最邻近的氧原子 X 和 Y 的连接线上,它可 以处于距离 X 轴 1Å 或距离 Y 轴 1Å 的两个位置。这正如鲍林所预言,后来为 Peterson 等人所证实的那样,氢原子占据这两个位置的几率相等,即氢原子平均 占据每个位置各一半的时间,这可能是因为除了在极低温度以外水分子是可以协 同旋转的(cooperative rotation)。另外,氢原子能够在两个邻近的氧原子之间“跳 动”。通常我们把这种平均结构称为半氢、鲍林或统计结构。见图 2-8(B)。 图 2-8 冰结构中氢原子( ● )的位置 (A)瞬时结构;(B)平均结构(也称半氢( ● ) 鲍林或统计结构);O 为氧原子 冰有 11 种结晶类型,普通冰的结晶属于六方晶系的双六方双锥体。另外, 还有 9 种同质多晶和 1 种非结晶或玻璃态的无定型结构,在常压和温度 0℃时, 这 11 种结构中只有六方型冰结晶才是稳定的形式
冰并不完全是由精确排列的水分子组成的静态体系,每个氢原子也不一定恰 好位于一对氧原子之间的连接线上。这是因为:1)纯冰不仅含有普通水分子, 而且还有H(HQO)和OH离子以及HOH的同位素变体(同位素变体的数量非常少 在大多数情况下可忽略),因此冰不是一个均匀体系:2)冰的结晶并不是完整的 晶体,通常是有方向性或离子型缺陷的。从图2-9可以看出,当一个水分子与另 外4个水分子缔合并旋转时,即伴随着中性取向使质子发生位错( dislocation),或 者由于质子在两邻近水分子的连线上跳动,形成H3O和OH而引起质子位错。前 者属于方向型缺陷,后者是离子型缺陷。冰结晶体中由于水分子的转动和氢原子 的平动所产生的这些缺陷,可以为解释质子在冰中的淌度比在水中大得多,以及 当水结冰时其直流电导略微降低等现象提供理论上的依据 分子1的特:了 质子从1跳到2 图2-9冰中质子缺陷示意图(A)定向作用形成的方向性缺陷(B)离子型缺陷 除晶体产生缺陷而引起原子的迁移外,冰还有其他“活动”形式。在温度 -10℃时,冰中的每个HOH分子以大约04A均方根的振幅振动,以及冰的某些 孔隙中的HOH分子缓慢地扩散通过晶格。这说明冰并不是一种静态或均匀的体 系。冰的HOH分子在温度接近-180℃或更低时,不会发生氢键断裂,全部氢键 保持原来完整的状态。随着温度上升,由于热运动体系混乱程度増大,原来的氢 键平均数将会逐渐减少。食品和生物材料在低温下贮藏时的变质速度与冰的“活 动”程度有关。 溶质对冰晶结构的影响 溶质的种类和数量可以影响冰晶的数量、大小、结构、位置和取向。下面我 们仅讨论溶质对冰晶结构的影响。uyet等人研究了各种溶质,例如蔗糖、甘油、 明胶、清蛋白、肌球蛋白和聚乙烯吡咯烷酮(PVP)存在时生成的冰结晶体的性质。 他还根据形态、对称要素( elements of symmetry)和形成各种冰结构所需的冷却速 率,对冰的结构进行分类,并观察到如下四种主要类型:六方型;不规则树枝状; 粗糙球状;易消失的球晶。此外,还存在各种各样中间形式的结晶。 六方型是大多数冷冻食品中重要的冰结晶形式,它是一种高度有序的普通结
- 8 - 冰并不完全是由精确排列的水分子组成的静态体系,每个氢原子也不一定恰 好位于一对氧原子之间的连接线上。这是因为:1) 纯冰不仅含有普通水分子, 而且还有H+ (H3O+ )和OH- 离子以及HOH的同位素变体(同位素变体的数量非常少, 在大多数情况下可忽略),因此冰不是一个均匀体系;2) 冰的结晶并不是完整的 晶体,通常是有方向性或离子型缺陷的。从图 2-9 可以看出,当一个水分子与另 外 4 个水分子缔合并旋转时,即伴随着中性取向使质子发生位错(dislocation),或 者由于质子在两邻近水分子的连线上跳动,形成H3O+ 和OH- 而引起质子位错。前 者属于方向型缺陷,后者是离子型缺陷。冰结晶体中由于水分子的转动和氢原子 的平动所产生的这些缺陷,可以为解释质子在冰中的淌度比在水中大得多,以及 当水结冰时其直流电导略微降低等现象提供理论上的依据。 图 2-9 冰中质子缺陷示意图 (A) 定向作用形成的方向性缺陷 (B) 离子型缺陷 除晶体产生缺陷而引起原子的迁移外,冰还有其他“活动”形式。在温度 -10℃时,冰中的每个 HOH 分子以大约 0.4Å 均方根的振幅振动,以及冰的某些 孔隙中的 HOH 分子缓慢地扩散通过晶格。这说明冰并不是一种静态或均匀的体 系。冰的 HOH 分子在温度接近-180℃或更低时,不会发生氢键断裂,全部氢键 保持原来完整的状态。随着温度上升,由于热运动体系混乱程度增大,原来的氢 键平均数将会逐渐减少。食品和生物材料在低温下贮藏时的变质速度与冰的“活 动”程度有关。 2. 溶质对冰晶结构的影响 溶质的种类和数量可以影响冰晶的数量、大小、结构、位置和取向。下面我 们仅讨论溶质对冰晶结构的影响。Luyet 等人研究了各种溶质,例如蔗糖、甘油、 明胶、清蛋白、肌球蛋白和聚乙烯吡咯烷酮(PVP)存在时生成的冰结晶体的性质。 他还根据形态、对称要素(elements of symmetry)和形成各种冰结构所需的冷却速 率,对冰的结构进行分类,并观察到如下四种主要类型:六方型;不规则树枝状; 粗糙球状;易消失的球晶。此外,还存在各种各样中间形式的结晶。 六方型是大多数冷冻食品中重要的冰结晶形式,它是一种高度有序的普通结
构。样品在最适度的低温冷却剂中缓慢冷冻,并且溶质的性质及浓度均不严重干 扰水分子的迁移时,才有可能形成六方型冰结晶。然而高浓度明胶水溶液冷冻时 则形成具有较大无序性的冰结构。 Dowell等在硏究冰冻的明胶溶液时发现,随着冷冻速度增大或明胶浓度的 提高,主要形成六方型和玻璃状冰结晶。显然,像明胶这类大而复杂的亲水性分 子,不仅能限制水分子的运动,而且阻碍水形成高度有序的六方型结晶。尽管在 食品和生物材料中除形成六方晶型外,也能形成其他形式的结晶,但这些晶型 般是不常见的。 三、水的结构 纯水是具有一定结构的液体,但还不足以构成长程有序的刚性结构,要阐明 水的结构是一个非常复杂的问题,人们已经发现液态水的分子排列远比气态水分 子更为有序,在液态水中,水的分子并不是以单个分子形式存在,而是由若干个 分子靠氢键缔合形成大分子(HOhn,因此水分子的取向和运动都将受到周围其他 水分子的明显影响,下面的一些事实可以进一步证明这一点:1)液态水是一种 “稀疏”(open)液体,其密度仅相当于紧密堆积的非结构液体的60%。这是因为 氢键键合形成了规则排列的四面体,这种结构使水的密度降低。从冰的结构也可 以解释水密度降低的原因。2)冰的熔化热大,足以破坏水中15%左右的氢键。 虽然在水中不一定需要保留可能存在的全部氢键的85%(例如,可能有更多的氢 键破坏,能量变化将被同时增大的范德华相互作用力所补偿),实际上很可能仍 然有相当多的氢键存在,因而使水分子保持广泛的氢键缔合。3)根据水的许多 其他性质和X-射线、核磁共振、红外和拉曼光谱分析测定的结果,以及水的计算 机模拟体系的研究,进一步证明水分子具有这种缔合作用。 Stillinger的研究结果表明,在室温或低于室温下,液态水中包含着连续的三 维氢键轨道,这种由氢键构成的网络结构为四面体形状,其中有很多变形的和断 裂的键。水分子的这种排列是动态的,它们之间的氢键可迅速断裂,同时通过彼 此交换又可形成新的氢键,因此能很快地改变各个分子氢键键合的排列方式。但 在恒温时整个体系可以保持氢键键合程度不变的完整网络 关于水的结构目前提出了三种结构模型:即混合型结构、填隙结构和连续结 构(或均匀结构)模型。混合型结构体现了分子之间氢键的概念,由于水分子间的 氢键相互作用,它们短暂聚集成由3、4、5或8聚体等构成的庞大水分子簇。这 些水分子簇与其他更紧密的分子处于动态平衡(水分子簇的瞬间寿命约为101 秒)。 连续结构模型的概念是分子间的氢键均匀地分布在整个水体系中,当冰熔化 时,许多氢键发生变形(更确切地说是断裂)。根据这个模型可以认为水分子的 动态连续网络结构是存在的
- 9 - 构。样品在最适度的低温冷却剂中缓慢冷冻,并且溶质的性质及浓度均不严重干 扰水分子的迁移时,才有可能形成六方型冰结晶。然而高浓度明胶水溶液冷冻时 则形成具有较大无序性的冰结构。 Dowell 等在研究冰冻的明胶溶液时发现,随着冷冻速度增大或明胶浓度的 提高,主要形成六方型和玻璃状冰结晶。显然,像明胶这类大而复杂的亲水性分 子,不仅能限制水分子的运动,而且阻碍水形成高度有序的六方型结晶。尽管在 食品和生物材料中除形成六方晶型外,也能形成其他形式的结晶,但这些晶型一 般是不常见的。 三、 水的结构 纯水是具有一定结构的液体,但还不足以构成长程有序的刚性结构,要阐明 水的结构是一个非常复杂的问题,人们已经发现液态水的分子排列远比气态水分 子更为有序,在液态水中,水的分子并不是以单个分子形式存在,而是由若干个 分子靠氢键缔合形成大分子(H2O)n,因此水分子的取向和运动都将受到周围其他 水分子的明显影响,下面的一些事实可以进一步证明这一点:1) 液态水是一种 “稀疏”(open)液体,其密度仅相当于紧密堆积的非结构液体的 60%。这是因为 氢键键合形成了规则排列的四面体,这种结构使水的密度降低。从冰的结构也可 以解释水密度降低的原因。2) 冰的熔化热大,足以破坏水中 15%左右的氢键。 虽然在水中不一定需要保留可能存在的全部氢键的 85%(例如,可能有更多的氢 键破坏,能量变化将被同时增大的范德华相互作用力所补偿),实际上很可能仍 然有相当多的氢键存在,因而使水分子保持广泛的氢键缔合。3) 根据水的许多 其他性质和X-射线、核磁共振、红外和拉曼光谱分析测定的结果,以及水的计算 机模拟体系的研究,进一步证明水分子具有这种缔合作用。 Stillinger 的研究结果表明,在室温或低于室温下,液态水中包含着连续的三 维氢键轨道,这种由氢键构成的网络结构为四面体形状,其中有很多变形的和断 裂的键。水分子的这种排列是动态的,它们之间的氢键可迅速断裂,同时通过彼 此交换又可形成新的氢键,因此能很快地改变各个分子氢键键合的排列方式。但 在恒温时整个体系可以保持氢键键合程度不变的完整网络。 关于水的结构目前提出了三种结构模型:即混合型结构、填隙结构和连续结 构(或均匀结构)模型。混合型结构体现了分子之间氢键的概念,由于水分子间的 氢键相互作用,它们短暂聚集成由 3、4、5 或 8 聚体等构成的庞大水分子簇。这 些水分子簇与其他更紧密的分子处于动态平衡(水分子簇的瞬间寿命约为 10-11 秒)。 连续结构模型的概念是分子间的氢键均匀地分布在整个水体系中,当冰熔化 时,许多氢键发生变形(更确切地说是断裂)。根据这个模型可以认为水分子的 动态连续网络结构是存在的
填隙结构模型是指水保留了一个像冰或者是笼形的结构,单个水分子填满整 个笼的间隙空间。以上3种模型主要的结构特征是液态水以短暂的氢键缔合形成 扭曲的四面体结构,在所有这些模型中单个水分子之间的氢键是在频繁地交换, 一个氢键一旦断裂则随即迅速转变成另一个新的氢键。在恒定的温度下,从宏观 观点看,整个体系的氢键缔合程度和网络结构是保持不变的;然而从微观角度讲, 各个氢键是处在一个不停的运动状态,而且氢键的破坏和形成之间建立了一个动 态平衡 氢键的键合程度取决于温度,在0℃时冰中水分子的配位数为4,最邻近的 水分子间的距离为276A,冰熔化时一部分氢键断裂(最邻近的水分子间的距离增 大),同时,刚性结构受到破坏,水分子自身重新排列成为更紧密的网络结构, 这与大量氢键的扭曲变形和熔化潜热的输入有关。随着温度上升,水的配位数增 多。例如,0℃时冰中水分子的配位数为4,水在15℃和83℃时的配位数分别为 44和49。而邻近的水分子之间的距离则随着温度升高而加大,从0℃时的2.76A 增至1.5℃时29A和83℃时的305A。显然,水的密度随着邻近分子间距离的增 大而降低,当邻近水分子平均数增多时其结果是密度增加,所以冰转变成水时 净密度增大,当继续温和加热至3.98℃时密度可达到最大值。随着温度继续上升 即密度开始逐渐下降。显然,在温度0℃和398℃之间水分子的配位数增多,水 的密度增大,而温度超过3.98℃时,由于热膨胀使邻近水分子间的距离增大。 水的低粘度与结构有关,因为氢键网络是动态的,当分子在纳秒甚至皮秒这 样短暂的时间内改变它们与邻近分子之间的氢键键合关系时,会增大分子的淌度 (或流动性)。 第三节水与溶质间的相互作用 一般概念 向水中添加各种不同的物质,不仅会改变被添加物质的性质,水本身的性质 也会发生明显的变化。亲水性物质靠离子-偶极或偶极-偶极相互作用同水强烈地 相互作用,因而改变了水的结构和流动性,以及亲水性物质的结构和反应性。被 添加物质的疏水基团与邻近的水分子仅产生微弱的相互作用,邻近疏水基团的水 比纯水的结构更为有序。这种热力学上不利的变化过程,是由于熵减小的原因引 起的。为使这种热力学上不利的变化降低到最小的程度,必须尽可能使疏水基团 聚集,以便让它们同水分子的接触机会减小至最低限度,这种过程称为疏水相互 作用。 在讨论水与溶质相互作用的特性之前,首先介绍几个有关的术语,即水结合 ( water binding)、水合作用( hydration)、结合水( bound water)和持水容量( water holding capacity)
- 10 - 填隙结构模型是指水保留了一个像冰或者是笼形的结构,单个水分子填满整 个笼的间隙空间。以上 3 种模型主要的结构特征是液态水以短暂的氢键缔合形成 扭曲的四面体结构,在所有这些模型中单个水分子之间的氢键是在频繁地交换, 一个氢键一旦断裂则随即迅速转变成另一个新的氢键。在恒定的温度下,从宏观 观点看,整个体系的氢键缔合程度和网络结构是保持不变的;然而从微观角度讲, 各个氢键是处在一个不停的运动状态,而且氢键的破坏和形成之间建立了一个动 态平衡。 氢键的键合程度取决于温度,在 0℃时冰中水分子的配位数为 4,最邻近的 水分子间的距离为 2.76Å,冰熔化时一部分氢键断裂(最邻近的水分子间的距离增 大),同时,刚性结构受到破坏,水分子自身重新排列成为更紧密的网络结构, 这与大量氢键的扭曲变形和熔化潜热的输入有关。随着温度上升,水的配位数增 多。例如,0℃时冰中水分子的配位数为 4,水在 1.5℃和 83℃时的配位数分别为 4.4 和 4.9。而邻近的水分子之间的距离则随着温度升高而加大,从 0℃时的 2.76Å 增至 1.5℃时 2.9Å 和 83℃时的 3.05Å。显然,水的密度随着邻近分子间距离的增 大而降低,当邻近水分子平均数增多时其结果是密度增加,所以冰转变成水时, 净密度增大,当继续温和加热至 3.98℃时密度可达到最大值。随着温度继续上升 即密度开始逐渐下降。显然,在温度 0℃和 3.98℃之间水分子的配位数增多,水 的密度增大,而温度超过 3.98℃时,由于热膨胀使邻近水分子间的距离增大。 水的低粘度与结构有关,因为氢键网络是动态的,当分子在纳秒甚至皮秒这 样短暂的时间内改变它们与邻近分子之间的氢键键合关系时,会增大分子的淌度 (或流动性)。 第三节 水与溶质间的相互作用 一、 一般概念 向水中添加各种不同的物质,不仅会改变被添加物质的性质,水本身的性质 也会发生明显的变化。亲水性物质靠离子-偶极或偶极-偶极相互作用同水强烈地 相互作用,因而改变了水的结构和流动性,以及亲水性物质的结构和反应性。被 添加物质的疏水基团与邻近的水分子仅产生微弱的相互作用,邻近疏水基团的水 比纯水的结构更为有序。这种热力学上不利的变化过程,是由于熵减小的原因引 起的。为使这种热力学上不利的变化降低到最小的程度,必须尽可能使疏水基团 聚集,以便让它们同水分子的接触机会减小至最低限度,这种过程称为疏水相互 作用。 在讨论水与溶质相互作用的特性之前,首先介绍几个有关的术语,即水结合 (water binding)、水合作用(hydration)、结合水(bound water)和持水容量(water holding capacity)