流其功学 已知PA=P,而且压强在平衡流体中是坐标的连续函数, 即p=p(x,y,z),按照多元连续函数的泰勒公式展开并略去 二阶以上无穷小量,可得 DB=b○pcbx Ox p+=dy 2--10) PD=P az 由(2-9)、(2-10)式可得 dP=dxdydz( k) Ox dy 0z (21 1) 26
26 已知 ,而且压强在平衡流体中是坐标的连续函数, 即 ,按照多元连续函数的泰勒公式展开并略去 二阶以上无穷小量,可得 pA = p p = p(x, y,z) dz z p p p dy y p p p dx x p p p D C B = + = + = + (2—10) 由(2—9)、(2—10)式可得 ( k ) z p j y p i x p dP dxdydz − − = − (2—11)
According to the condition of fluid equilibrium F=0(2-12) from(2-8) and(2-12) we can obtain op odxdyd2lf, I ap +|f +If k|=0 1 namely一 ap-O 1p= O (2-13) D The formula(213) is the differential equation of fluid equilibrium(Euler's equilibrium equation physical meaning When fluids are in balance the mass force acting on the unit mass fluid equals to the resultant force of pressure 27
27 from(2—8)and(2—12)we can obtain 0 1 1 1 = + − + − − k z p j f y p i f x p dxdydz f x y z namely 0 1 0 1 0 1 = − = − = − z p f y p f x p f z y x (2—13) The formula (2—13)is the differential equation of fluid equilibrium (Euler’s equilibrium equation). physical meaning : When fluids are in balance the mass force acting on the unit mass fluid equals to the resultant force of pressure. According to the condition of fluid equilibrium F = 0 (2—12)
流功学 根据流体平衡条件∑F=0 (2-12) 由(2-8)及(2-12)式可得 pdxdydalf, I ap +|f +If k|=0 p ay 即 f 尸Ox O (2-13) 1 op O 尸Oz (213)式为流体平衡微分方程式(欧拉平衡方程式)。 物理意义: 力相单滴体平衡时,作用在单位质量流体上的质量力与压力的合
28 由(2—8)及(2—12)式可得 0 1 1 1 = + − + − − k z p j f y p i f x p dxdydz f x y z 即 0 1 0 1 0 1 = − = − = − z p f y p f x p f z y x (2—13) (2—13)式为流体平衡微分方程式(欧拉平衡方程式)。 物理意义: 当流体平衡时,作用在单位质量流体上的质量力与压力的合 力相平衡。 根据流体平衡条件 F = 0 (2—12)
1. Potential function of mass force First formula(2-13) multiplies by dx dy and dz respectivel and then summate the three results the end is f+f+fd-(ax+d+)=0(2-14) dx az becausep=p(x, y, =),then 如=川(/x+/dhy+ft) (215) The formula(2-15) is the general one of the Euler's equilibrium formula(differential formula of pressure) For incompressible fluid p is constant. Know from math analysis theory that the right-hand sides in the formula (2-15) are certainly the whole differential of a certain coordinate function w=w(x,y, a) 29
29 1. Potential function of mass force ( ) 0 1 = + + + + − dz z p dy y p dx x p f dx f dy f dz x y z (2—14) because p = p(x, y,z) ,then dp (f dx f dy f dz) = x + y + z (2—15) The formula (2—15)is the general one of the Euler’s equilibrium formula (differential formula of pressure) . For incompressible fluid is constant. Know from math analysis theory that the right-hand sides in the formula(2—15)are certainly the whole differential of a certain coordinate function . W =W(x, y,z) First formula(2—13)multiplies by dx 、 dy and respectively dz and then summate the three results , the end is
流其功学 二、质量力的势函数 将(213)式分别乘以在后相加,则有 ++-1(a9n c=)=0(214) az 因p=p(x,y,=),则有 如=p(+h+) (2-15) (215)式为欧拉平衡方程式的综合式(压强微分公式)。 对于不可压缩流体ρ=常数,根据数学分析理论可知, (2-15)式右端也必是某一坐标函数W=W(x,y,z)的全微 分
30 二、质量力的势函数 ( ) 0 1 = + + + + − dz z p dy y p dx x p f dx f dy f dz x y z (2—14) 因 p = p(x, y,z) ,则有 dp (f dx f dy f dz) = x + y + z (2—15) (2—15)式为欧拉平衡方程式的综合式(压强微分公式)。 对于不可压缩流体 常数,根据数学分析理论可知, (2—15)式右端也必是某一坐标函数 的全微 分。 = W =W(x, y,z) 将(2—13)式分别乘以 dx 、 dy 、 dz 后相加,则有