Chapter 8 Theory of Spatial Problems 第八章:空间问题的理论 徐汉忠第一版20007 弹性力学第二章
徐汉忠第一版2000/7 弹性力学第二章 1 Chapter 8 Theory of Spatial Problems 第八章:空间问题的理论
8.1 Differential equations of equilibrium 平衡微分方程 Plane problems平面问题的平衡方程 do ox+ovx/ay+X=0 Otxy/+ooyoy+Y=0(2.2.2) Spatial problems空间问题的平衡方程 do/ax+oT dy+oT/azt=0(8.1.1) Otxy/ox+ doy/oy+ouz/ozt Y=0(8.1.2) dtx/ox +otv/ay+ do /az+Z-0(8.1.3) 徐汉忠第一版20007 弹性力学第二章 2
徐汉忠第一版2000/7 弹性力学第二章 2 • Plane problems平面问题的平衡方程 x /x+yx/y+X=0 xy/x+y /y+Y=0 (2.2.2) • Spatial problems空间问题的平衡方程 x /x+yx/y+zx/z+X=0 (8.1.1) xy/x+ y /y+zy/z+Y=0 (8.1.2) xz/x +yz/y+ z /z+Z=0 (8.1.3) 8.1 Differential equations of equilibrium 平衡微分方程
z r,+=d rra atsdr Tur+=ds dy r,x+=4 -1 dox/ax+oT oy+ot/aztX0(8.1.1) OTxyox+ doy/oy+ouzozt Y=0(8.1.2) x/Ox+0vyOy+o20z+Z=0(8.1.3 徐汉忠第一版20007 弹性力学第二章
徐汉忠第一版2000/7 弹性力学第二章 3 x /x+yx/y+zx/z+X=0 (8.1.1) xy/x+ y /y+zy/z+Y=0 (8.1.2) xz/x +yz/y+ z /z+Z=0 (8.1.3
82 State of Stress at a point.一点的应力 Problem 1: When the six stress components o Oy O, txy tx ty at a certain point P are known, we want to find the stress acting on any inclined plane passing through the point. Let the outward normal to the inclined plane be n and the direction cosines of n be I=coS(N, x)m=cos(N, y) n=cos(N Z 问题1:已知1P点的σ、,TT2过P 点的斜面的法线方向余弦,m,n,求斜面上应力 徐汉忠第一版20007 弹性力学第二章 4
徐汉忠第一版2000/7 弹性力学第二章 4 8.2 State of Stress at a point. 一点的应力 • Problem 1: When the six stress components x y z xy xz yz at a certain point P are known, we want to find the stress acting on any inclined plane passing through the point. Let the outward normal to the inclined plane be N and the direction cosines of N be l=cos(N,x) m=cos(N,y) n=cos(N z) • 问题1:已知 1.P点的x y z xy xz yz 2.过 P 点的斜面的法线方向余弦l,m,n,求斜面上应力
ProblemI. 1: Stress components XNYN ZN acting on any inclined plane 斜面上应力 XYZ XN-lox+m tyx YN ITxy+ moy (23.3) XNIo+m tuxtnt YN-Itxy+ mo +tzv((8.2.1 I tx+munoz 徐汉忠第一版2000/7 弹性力学第二章 5
徐汉忠第一版2000/7 弹性力学第二章 5 XN=lx+m yx+n zx YN=lxy + my +nzy (8.2.1) ZN=l xz+myz+nz Problem1.1: Stress components XN YN ZN acting on any inclined plane 斜面上应力 XN YN ZN XN=lx+m yx YN= lxy+ my (2.3.3)