Supplement1960961we000a oae st [ + [ aa ada e [ [ s sseaersesas-es()aaireaenesitenea auereaiteraro eareraoaisusersseaa8ueeasemteantsoaeaaesnseresreeeeeeease aeeeseersesu aeaosso seoe ses aeetenea asero aanearsaoe002 4e 02 pue8 45 +1 1 8 6001e 8-0-x uameeMB aaseo st ssae es aie ena o st se otdo aroeu eon'He) eee-Bal ONaaetores eenseateae eese(9) (b)05e oa teaodrd stosh ot se ae u ous sray eep ptetesissees se aaoseaeneoeh pexi aauua .sates apiteu Jo eouas ur (9)["100] ['1][10s100]eseeaeeseoeosaiae e aear st oa=Xesaaaea(8.u+V.u)oun oeesereuoensepuis oneeingeuoiaenaasaeasaaeesineiein(T)Ooasaesauaaai21-9=HA 82TON'(HO)00200
Homogeneous Reaction Kinetics 302.660 COMMENTS General: For general treatment of Isotopic exchange reactions see ( 10 ) . in those cases where rate constant for the chemical process responsible for exchange has not been explicitly determined the value listed under k will be Indicated In the "Defined mass-action law" column by either R or kp . R, the rate of the chemical process responsible for exchange: Is calculated from the equation: R=-^-ILA^ In(l-x), m and n are the number of exchangeable atoms of the labeled species (m • A-HI • B) in A and B respectively. A, represents the sum of [A] + [L] and B represents the sum of [B] + M. X Is the fractional ex tent of Isotopic equilibration having taken place at time t. The pseudo first order rate constant k for the defined massaction law feF£ is calculated from the expression fe=- ^ In(l-x) where X and t have the same significance as above. Reaction: (.1) Selected data. Authors show that at 25° from 3 to 10M H SO R Is proportional to a°' * and at 24 H SO 100° from 1 to 4 M, R Is proportional to a°'*£ ^ At tnree fi xe(j HSQ concentrations, 1.1, 2.2, and 4 * 4 it was shown that R was proportional to [nT • At two fixed [H ]=2.2 and 4.4 it was shown that R was proportional to [HS0 4~]. (.2) Se lected data. Calculated second order rate constant decreases more than 50^ with a ten fold increase in [A], increasing pH from 5-14 increased exchange rate less than 50$. Activation energy and A-factor calculated by least squares using all da ta pH=5-12.7. (.3) Exchange rate corrected for fraction of exchanging atoms in gas phase. (.4) (.5) NO mea surable exchange In 44 hrs. (.6) in absence of halide salts rate of exchange immeasurably slow. Sulfur atom labeled in either SO or SOCl by ( 20). Third order rate law observed by ( 2O ) with specific constants for each halide salt. ( 2O) also observed about a three fold Increase in the calculated rate constants when SOCl was in excess over rate constants when S0 g was solvent. ( 3 ) calculates a second order rate law assuming rapid equilibrium SOCl +sbci ^ — Sbcl *SOC1 with a temperature dependent equilibrium constant, K= lJlIl. , with K=0.8 at 0°» 0.9 at 15°, 1.4 at 23° and 2.0 at 30°. [SbClJ [SOC1 2] With SbCl^ as catalyst ( 3 ) did not observe any large increase in rate constants with SOCl in excess. With mixed salts (CH g ) 4NCl and A1C1 3 catalytic effect of (CH g ) 4NCl is cancelled by formation of a 1 to 1 complex Aid,* (CHg ) 4NC1. With mixed salts Sbcl 5 and (CH3 ) 4NC1 an Inactive 1 to 1 complex also is formed but either salt in excess is observed to have its normal catalytic effect. HCl showed no appreciable effect upon catalytic activity of either (CH ) NC1 or Sbcl . 34 5 (.8) Reaction found to be zero order with respect to A on fourfold variation of concentration. Order with respect to B not determined as concentration not varied, units of zero order constant converted from mmoles mln" 1 to Ml~ 1 sec.~ 1 . Constant gives order of magnitude only. First order catalytic constants estimated using solubilities of salts in pure B. Identical results obtained using labeled S0 2 or SOBr2 . (.12) Selected values. Variation of rate constants observed with change in Ionic strength as well as with specific salts. PH maintained with phosphate buffers. (.13) Rate con stant calculated from rate of (.11) and rate constant ratio. (.14) Rate constant calculated from rate of (.11) and National Bureau of Standards - National Research Council December, I960
1960Supplement096eq0eaeanntarasanoadannaseee eeesaaresiousem seon*onel H oueid y (c) (g)"H(61)a'(ar)r(8)(2)se e)6 sn H (t)8821003e(g)889061ps(z1)0(on)'H'L(t)8oseoraCeee9102Saa()0699912aeeeeee"27i-0Ot(z)sete)"BABS(g)218696180o4uooesnaaeiisoogienas(g)79et80ossasea中9*2960o62T()00C*99099202(at)50
Homogeneous Reaction Kinetics 302.660 COMMENTS (continued) rate constant ratio. Value extrapolated by authors from data, (not given), between 60 and 90 . (.18) Rate constant is for exchange per sulfite. Authors list this value divided by two for comparison with compounds containing a single -SSO " group per molecule. (.20) NO dependence upon [H+] observed by ( 15) up to concentrations 1.5M. Values of ( lfs) about four times faster than those of ( 19 ). Both show evidence of decrease in rate constants with decrease in ionic strength. ( 19) observed that simultaneous hydrogen exchange is Immeasurably fast. ( 23 ) observed a slight anion catalysis in acid solution and calculated catalytic constants for CIO 7 NO ~, Br~ and Cl~. This was not observed by ( 19 ) In neutral solutions. Rate constants of ( 13)( 23 ) are for exchange of all six H o while constants listed by ( 15) and ( 19 ) are for Individual exchange all six being assumed identical. LITERATURE (*) D. P. Ames, J.E. Wlllard, ACS 1951, 73, 164. ( 3) D. E. Burge, T. H. Norrls, ACS 1959, 81, 2324. ( 2) A. Anderson, N. A. Bonner, ACS 1954, 76, 3826. ( ) D. E. Burge, T. H. Norris, ACS 1959, 81, 2329. n R.A. Cooley, D.M. YOSt, ACS 1940, 62, 2474. ( 6) H. Elkeles, Acta. Chem, Scand. 1954, 8, 1557. ( 7 ) A. Fava, A. Iliclto, ACS 1958, 8O, 3478. ( 8 ) A. Fava, G. Pajaro, ACS 1956, 78, 5203. ( 9 ) E. C.M. Grigg, I. Lauder, TFS 1950, 46, 1039. ( 10 ) G.M. Harris, TFS 1951, 47, 716. ( 1J) R.H. Herber, T. H. Norrls, J.L. Huston, ACS 1954, 76, 2015. ( 12 } T. C. Hoering, j. w. Kennedy, ACS 1957, 79, 56. ( 13) J.P. Hunt, R. A. Plane, ACS 1954, 76, 5960. ( 14) J.P. Hunt, H. Taube, J.C.P. 1950, 18, 757. ( 15) J.P. Hunt, H. Taube, J.C.P. 1951, 19, 602. ( 16) R. E. Johnson, T.H. Norris, ACS 1957, 79, 1584. ( 17 ) R. E. Johnson, T.H. Norris, J.L. Huston, ACS 1951, 73, 3052. ( 18 ) W. R. King, C. S. Garner, ACS 1952, 74, 5534. ( 19 ) H. A. E. MacKenzie, A.M. Milner, T.F.S. 1953, 49, 1437. ( 20 ) B.J. Master, T.H. Norris, ACS 1955, 77, 1346. ( 21) T.H. Norrls, ACS 1950, 72, 1220. ( 22) T.H. Norrls, J.P.C. 1959, 63, 383. ( 23 ) R. A. Plane, H. Taube, J.P.C. 1952, 56, 33. § CO National Bureau of Standards - National Research Council December, I960
SUPPLEMENT19600961PUBCC2uoo c pue soieyC/n ui oie nowydoqug0oaseepneI/wu!**stuowwonOTXo!-:T-Rstnisaad eai met eeySian oedsnam aet tee aeauon'sos's1%o50420244eo0aao+01x9'1>sepouoM100110m201x0oe00900%88"B2()VVVVVV04ttt290026180anseeae1SBfss00'opueppeu a n ae o o e a t e870O'T1Itounowypuoppy+++odOo:+1(Ho)8(g)sseseeSEE"T'G20090010-''1-I1'0=v9*31-6*6-8Jo qunowyeea'-Vgoraqnel1-9'0-2962089:0=8"Huoaios"Toos“100e(e)O"HTionneesenBuaiaen"s“sutymeh"T'0-10 +6*0't0%-10 +++* 010-10 ++*1008 _n0+002saeuras(")HEE↑srn o↑+10+0* 10 +→10+:*10+"T000sSngteN020++0"100s02t341
Homogeneous Reactions ISOTOPIC EXCHANGE 302.670 Vlth Group Central Element complexed with exchanging Vllth Group ions. Liquid phase Amounts are in M/I. Rates and rate con stants i n M/ I an d sees. No. .1 .2 .3 .4 React! on SOC1 + Cl*" —— > SOC1 * + Cl" 2 2 SeOCl 2 + Cl*~ — > SeOCl 2* + Cl" CrCl"1"* + Cl*"" — > CrCl*~*" + + Cl" W Cl ~ 3 + Cl*" — > W Cl Cl*" 3 + Cl" 29 28 So I vent soci 2 SeOCl 2 V V Amount of reactant B=0.25-0.32 8*0.12-0.17 B=0.5 B=0.6-l 10 2A=4.8; 10 2B=2.4-10 3=9.9-12.6 Addend (CH 3) 4N+ .« Fe++ + /HC10. i ++ ICr of Amount addend . 3" = B -I B 3 1.0 } 0.0053J Def i ne d massact i on 1 aw t± <io3 t± <500 t, <700 i <500 tj <400 t, <1.5X104 feAfifcr4"^ feAB <D Temperatur 0 25 0 21 48 40 45 0 25 k = * 5.2 2.1 < 10 n ' -1 -4 Comment s * * o> •f ( 2) ^ (°> ( x) COMMENTS Reaction: (.3) Rate law with respect to A or Cr** based upon only two determinations. (.4) Rate law with respect to B not verified as variation In concentration of B small since Its concentration always large with respect to A. Authors state all 9 Cl appeared to be fclnetlcally equivalent Insplte of fact that three are considered to be bridge atoms. LITERATURE t 1 ) O.L. Hawklns, C. S. Garner, ACS 1958, 80, 2946. ( 2) B.J. Masters, N. D. Potter, D. R. Asher, T. H. Norrls, ACS 1956, 78, 4252. ( 3 ) H. Taube, E. L. King, ACS 1954, 76, 4053. National Bureau of Standards - National Research Council December, I960
1960SUPPLEMENT.,:09611/w ut ouu ounowyCCeweoonasvy4 peb1T0es pue 1/w u!srao**2Or21ueaeeaoasa=*e4O:22ROTX9ft8444444459128a>114:5c.R'T10428554O-ssew pouijoot0MBI's'-+aysarooaaaaaedeNay0'1-'Hpueppe90*0tunowy526&0.oo(g)1200001OpueppyOTOH"OTOH2821929 = 8eot't Veot1000-1totunowy8e"-ounog(T+V),OT(H+2)20TeoieeseytnuoiaenV'N0"n0°Hs8+*40 + e+*0ONulD-0eaeee(1)"Vaisen etet ot8CR↑orr一+-0 eeingeroe069208n+e+4'ON21
Homogeneous Reactions 302.690 ISOTOPIC EXCHANGE Vlth group element between oxidation states liquid phase Amounts are in M/ I. Rate constants are J n M/I and sec. kF under defined mass action law Indicates rate constant listed Is for pseudo first order Isotopic equilibration only. No. .1 .2 React i on cr**3 + cr+2 -^ Cr+3 + Or** 2 cr^3 + cr{fi = -^ -H C <D > 0 CO H 20 H sO Amount of react an t 10 4 (A+L) = 6-360; 10 2 (B+M) = 1-7 10 2A = l; 10 3B = 5 Addend HC104 HC10 4 Amount of addend 1.0 1.0 0.51 0.37 0.28 0.21 1.0 0.2-1.0 0.05 Defined massact i on 1 aw feAB feABh4"]" 1 feFA OJ u 3 -t-1 «J L. 0> 0. E <D t— 0 24 24 24 24 24 34 24 25 45 k = k° x I0n fe° 4.0 1.22 2.06 2.95 4.5 5.2 3.7 1.15 <2 1 n -6 -4 -4 -4 -4 -4 -4 -4 -8 -7 E 22 A = A° x ion A° 2 n 12 CO c 0> E E 0 o * * 0) l_ 3 -H cri <D -»-• _l ( x ) ( 8) COMMENTS Reaction: (.1) No measurable change In rate constant In presence of HC1 O.Olf or 0.23 f. In If HC1 rate constant about 10% larger than In presence of If HC10 . (.2) Pseudo first order constant for fractional exchange calculated from half time given by authors. LITERATURE (*) A. Anderson, N. A. Bonner, ACS 1954, 76, 3826. ( 2) H.E. Menker, C. S. Garner, ACS 1949, 71, 371. National Bureau of Standards - National Research Council December, I960
SUPPLEMENT19601/n uioe ss(e)i/oiuBunowy-oo aied pun seing0961 nqwe08C522CaseniSren***00spue+$V00es oaeeoost de sed st ae asuoo saet et ae u euteunaseeeaaseieseeoaa ries t ree e aseet e n ese taot sauseier rerso ren erenaen(t)rsaseeV?uOT ×o220I+02?4"774E819'T29320'69<1<I<a9&40G0020222yMBIAvesreaeepouitenSSeEfosunow6*0-90*0pueppe6'0-1'011-3=HA26'0OT26°0O'To'To'T1O'9:puoppy9'TPOTOHOTOH"OTOH*OTOH"OTHE003101 :000-9-V00SEE1Sg1 -8'2-g01 18'T-Ve0t2-6'0 9-9°0hueoroounoe1-O ,O1Sm8g0 6-Ve0T00103L-4e0 t9=Ve013onaresenruotaensrseeineO"H2000uSAOsa0 + 0++0 ++kt080 + 8+810+0 + +100(0) 0h +, (0)oh+0 +g++40+0+40 +s0(0)0 +,() 0htre11←r+*0 ++OSNuOs8+*0 + #+1010+0 + #+日00++'no 640 + uospuosas969308!I218745
Homogeneous Reactions 302.696 ISOTOPIC EXCHANGE Vlth group element involving complexed valence states Liquid phase Amounts are In M/ I. Rates and rate con stants are in M/I and sec. feF under defined mass action law indicates constant tabulated Is pseudo first order Isotopic equilibration constant. No. .1 .2 .3 .4 .5 .6 .7 React i on CrF+s + Cr^2 — » CrV2 + Cr+2 CrCl+2 + Cr^2 — > Cr*Cl+a + Cr+2 CrBr+* H- cr**2 -* Cr*Br+2 + Cr+ 2 CrN *2 + Cr*" "1 2 — > Cr*N ~*~ 2 + Cr*2 3 3 CrNSC4" 2 + Cr**2 — > Cr^SC"4" 2 + Cr4" 2 CrF + cr*^" 3 — * Cr*F + Cr+3 3 3 MO*(CN) ~ 4 -H MO(CN) ~ 3 — > 8 8 MO(CN) " 4 4- MO*(CN) " 3 8 8 vent Sol H 80 H 2° H2° « 2° H 2 ° H 8° H 20 Amount of reactant 10 3A=6; 10 3B=7 3 3 0.5-5 0.9-7 10 5A=5-47; 10 5B=7-51 10 4A=4; 10 3&=1 10 3A=1.8; 10 3B=3.8 10 3A=9; 10 3B=5 A=0.16;B=0. 10 10 5A=5-5000; 10 5B=4-1500 Addend HC104 HC10 4 HC10 HC10 HC10 4 ^°i!e 1.6 Amount of addend 0.93 0.97 0.1-0.9 0.05-0.9 1.0 1.0 1.0 .01 .5 1.0 PH-2-11 mass- sfined action law 0 feAB feAB feAB feAB feAB *** feAB 'emperature 0 27 43 0 0 0 27 22 22 22 2 fe fe° x fe° 2.5 2.6 9.0 9 >6 >1 1.8 1.5 6 4 >1 n -3 -2 -2 0 -1 0 -4 -6 -7 -7 +3 A/ 14 As* -20 Comments * * Li terature ( X ) ('H3 ) ( x ) f 1 ) (*) ( 2) (*) COMMENTS Reaction: (.3) Calculated rate constant represents lower limit based upon at least 90% exchange in sampling time of 25 seconds. (.4) Calculated rate constant represents lower limit based upon at least 90% exchange in sampling time of 330 seconds. (.7) Calculated rate constant represents lower limit based upon assumed second order exchange reaction. National Bureau of Standards - National Research Council December, I960