植物抵抗胁迫(抗逆性)的机制 避逆( avoidance)机制—物种进化形成的组 成性的适应。 耐逆( tolerance)机制—调整生理反应机 制(驯化)以适应胁迫 Saguaro Honey mesquite Abiotic stress Spinach Acclimation Mohave desert star Black spruce Resistance Stress avoidance Stress tolerance
植物抵抗胁迫(抗逆性)的机制: 避逆(avoidance)机制 ——物种进化形成的组 成性的适应。 耐逆(tolerance)机制——调整生理反应机 制(驯化)以适应胁迫
植物驯化过程通过改变基因表达方式 来形成抗逆性的生理反应机制 Ozone Stress recognition Extreme temperatures Signal transduction Flooding Drought Physiological and developmental event Salt Altered cellular metabolism
植物驯化过程通过改变基因表达方式 来形成抗逆性的生理反应机制
一节低温胁迫和植物抗寒性
第一节 低温胁迫和植物抗寒性
冷害( Chilling stress) 主要零上低温所引起。 冷害引起的生理反应: 降低原生质的流动性; 原生质膜透性增大,胞内内容物外渗; 光合作用受抑制; 呼吸紊乱; 改变基因表达和蛋白质的合成方式; Exposure of chilling 孙 sensitive plants such as cucumber to2°C for 1d cause severe injury. The plant on the right was kept at 25°C
一、冷害(Chilling stress) 主要零上低温所引起。 冷害引起的生理反应: 降低原生质的流动性; 原生质膜透性增大,胞内内容物外渗; 光合作用受抑制; 呼吸紊乱; 改变基因表达和蛋白质的合成方式; Exposure of chillingsensitive plants such as cucumber to 2°C for 1d cause severe injury. The plant on the right was kept at 25 °C
冷伤害的主要机理: 低温—→膜相变(液晶相→凝胶相) 凝胶相:膜收缩,透性增大,胞内内容物外渗 膜结合蛋白活性下降,代谢紊乱。 膜相变在一定温度范围内是可逆的。 Thermal transition from the gel phase( Lg to liquid crystalline phase(La) in a pure phosphatidylcholine bilayer (low panel) At low temperatures, motion of fatty acid chains is limited by Van der Waals forces. As the temperature is raised through the phase transition heat is absorbed and van Temperature der Waals forces are La disrupted to form a bilayer with melted fatty acid chains
冷伤害的主要机理: 低温 —→ 膜相变(液晶相→ 凝胶相) 凝胶相:膜收缩,透性增大,胞内内容物外渗; 膜结合蛋白活性下降,代谢紊乱。 膜相变在一定温度范围内是可逆的。 • Thermal transition from the gel phase (Lß) to liquid crystalline phase (Lą ) in a pure phosphatidylcholine bilayer (low panel). • At low temperatures, motion of fatty acid chains is limited by Van der Waals forces. As the temperature is raised through the phase transition, heat is absorbed and Van der Waals forces are disrupted to form a bilayer with melted fatty acid chains