热流科学与工程亚步文源大堂G教育部重点实验室2.Momentum conservationApplying the 2nd law of Newton (F=ma) to theelementalcontrolvolume(控制容积)in the three-dimensional coordinates:r[IncreasingrateofmomentumoftheCV]=[Summationofexternal(外部)forcesapplying on the CVAdopting Stokes assumption: stress is linearly proportionalto strain(应力与应变成线性关系),Wehavefollowingresultfor component u in x-direction :CFD-NHT-EHT中6/57CENTER
6/57 Applying the 2nd law of Newton (F=ma) to the elemental control volume(控制容积) in the threedimensional coordinates: 2. Momentum conservation [Increasing rate of momentum of the CV] = [Summation of external(外部) forces applying on the CV] Adopting Stokes assumption:stress is linearly proportional to strain(应力与应变成线性关系),We have following result for component u in x-direction:
热流科学与工程西步文源大堂教育部重点实验室SourcetermaOua(pu)a(puu).(puv).a(puw)op(AdivU +2nataxaxOxaxoyozConvectionDiffusionTransienttermtermtermaaouovouowpFnTOzOzayaxayOxDiffusiontermn dynamic viscosity , α fluid 2nd molecular viscosity.2For gas, π=-=n3CFD-NHT-EHTΦ7/57CENTER
7/57 dynamic viscosity , ( ) ( ) ( ) ( ) ( 2 ) [ ( )] [ ( )] x u uu uv uw p u divU t x y z x x x v u u w F y x y z z x fluid 2nd molecular viscosity. For gas, 2 =- 3 Transient term Convection term Diffusion term Diffusion term Source term
热流科学与工程西步文源大堂E教育部重点实验室It can be shown (see the notes) that the above eguationcan be reformulated as(改写为)following general form ofNavier-Stokes equation for u component:a(pu)+ div(puU)= div(ngradu)+SatDiffusionTransientConvectionSourceterm扩散项term源项term非稳态项term对流项u, y, w ----velocity components in three directions, respectivelydependent variable(因变量)to be solved;U ----fluid velocity vector; U=ui +vj+ wkS,----source term.中CFD-NHT-EHT8/57CENTER
8/57 ( ) ( ) ( ) u div U div grad S u u u t It can be shown (see the notes) that the above equation can be reformulated as (改写为)following general form of Navier-Stokes equation for u component: Transient term 非稳态项 Convection term对流项 Diffusion term扩散项 Source term源项 u, v, w -velocity components in three directions, respectively, dependent variable(因变量) to be solved; -fluid velocity vector; Su -source term. U U ui v j wk =
热流科学与工程亚步文源大堂CE教育部重点实验室Sourcetermin x-direction:ForincompressiblefluidaaaaowauOvap(adivU)+'pFnaxOzaxaxayaxaxOxSimilarly:aaaOuOvOwaop(adivU)+ pF,-(nn(noyoyaxOzayayayayaaaavowaOuap(adivU)+ pF(nnOzOzayOzOzOzazaxFor incompressible fluid with constant properties the sourceterm does not contain velocity-related partΦCFD-NHT-EHT9/57CENTER
9/57 Source term in x-direction: ( ) ( ) ( ) ( ) u x u v w p S divU F x x x y z x x x ( ) ( ) ( ) ( ) v y u v w p S divU F x y y y z y y y ( ) ( ) ( ) ( ) w z u v w p S divU F x z z y z z z z Similarly: For incompressible fluid with constant properties the source term does not contain velocity-related part. For incompressible fluid
热流科学与工程西步文源大堂G教育部重点实验室3.Energy conservationIncreasingrateof internal energyintheCVl-[Netheat going into the CVJ+[Work conducted by bodyforcesand surfaceforcesIntroducing Fourier's law of heat conduction andneglecting the work conducted by forces; Introducingenthalpy (焰) h = C,T,assuming C,= constant,We have:a(pT+ div(pTU)= div(一grad(T) + STat2anaT-aTaT4nKgrad(TOzaxayPrcc,nC,nD中CFD-NHT-EHT10/57CENTER
10/57 3. Energy conservation [Increasing rate of internal energy in the CV]= [Net heat going into the CV]+[Work conducted by body forces and surface forces] Introducing Fourier’s law of heat conduction and neglecting the work conducted by forces;Introducing enthalpy(焓) ( ) ( ) ( ( )) T p div U di T T T c v grad S t ( ) Pr p p p c c c ( ) Pr p p p c c c ( ) Pr p p p c c c ( ) Pr p p p c c c h c T p , assuming p c constant, ( ) T T T grad T i j k x y z We have: