db-Ho Idl xr fo IdlxFI 4πr 3 2.任意形状载流导线的磁场 b=dB Po ldl xr L4元 应用 1.载流长直导线的磁场 解:dl: db= Mo ldl 6 4元 方向:垂直于板向里 ⊕
2. 任意形状载流导线的磁场 1. 载流长直导线的磁场 二、应用 a P O 解: : l I l d 2 0 d sin 4π d r I l B = 方向:垂直于板向里 I, L I l d r 2 0 d 4π d r I l r B = 3 0 d 4π r I l r = = = L L r I l r B B 2 0 d 4π d
49a db= o Idl sin 8 4元 sin(丌-)sin6 I/t0 l=acot(丌-6)=- a cot e ade dl=acsc 0de ⊕ sin'e dB=o I ede 4π 各电流元在P点产生的磁场方向相同⑧ b=ldB= A园dOs6_A1 (cos61-c0s62) 14π
= L B dB sin a = l = acot( − ) = −acot 2 1 a P r O l I, L I l d 各电流元在P点产生的磁场方向相同 sin( − ) = a r a I B sind 4π d 0 = = 2 1 d sin 4π 0 a I 2 0 d sin 4π d r I l B = (cos cos ) 4π 1 2 0 = − a I d csc d 2 l = a 2 sin ad =
时论(1)导线为无限长: 202=I B=4/ 6,=0.0 (cos 81-cos 82) 42 T B 2a (2)导线为半无限长: 6=/2,62=T 或日1=0,02=/2 B Ata asP
(1)导线为无限长: 1 = 0,2 = π a I B 2π 0 = (2)导线为半无限长: 或1 = 0,2 = π/ 2 1 = π/ 2,2 = π a I B 4π 0 = 讨论 a O I,L P (cos cos ) 4π 1 2 0 = − a I B
2.载流圆线圈轴线上的磁场 ldl dB⊥dB Idl Idl dB= R 4元r dB,=dbsine r p dB dB bcos e bo/ sin 8 b=ldB=dOsing= 4元r uoI sin 8 4Ttr2-2TR- HoRsin Sine 6 o dl 4 2r R sin e r=√R2+x
x x B d dB⊥ P I O R 2. 载流圆线圈轴线上的磁场 2 0 4π d d r I l B = dBsin L = dB// I l: d dB// = dBsin dB⊥ = dBcos = L B dB// = L r I l 2 0 4π d sin = L l r I d 4π sin 2 0 R r I 2π 4π sin 2 0 = 2 0 2 sin r IR = r R sin = I l d r 2 2 r = R + x
O X