A~B→PAP=B →(PAP)'=BI →PrA(PT=B →PAI(PI)I=B →I(P)A(P)1=B →QA'Q1=Br(Q=(P) →AT~B7 his do Is pro ed by trial v of Print2Flash
This document is produced by trial version of Print2Flash. Visit www.print2flash.com for more information
相似矩阵有许多共同的性质 可逆性 迹相同 相同 特征值 相同 秩相同 行列式 相同 等价 This docur nt is produced by trial vers of Print2Flash.Visit w
This document is produced by trial version of Print2Flash. Visit www.print2flash.com for more information
为什么要考虑矩阵的相似变换?? 相似矩阵具有许多共同的性质,因此,对于n阶方阵A, 我们希望在与A相似的矩阵中寻求一个较简单的矩阵。在研 究A的性质时,只需先研究这一较简单矩阵的同类性质。 若方阵A与一个对角阵1相似,则称方阵A可对角化。 记为A~A,并称1是A的相似标准形。 所谓对角化过程,就是找一个可逆矩阵C,使得C1AC 为对角矩阵
This document is produced by trial version of Print2Flash. Visit www.print2flash.com for more information
n阶矩阵A与对角矩阵相似的条件 定理n阶矩阵A可对角化的充分必要条件是A有n 个线性无关的特征向量. 证明:必要性 若A~A 则存在n阶可逆矩 阵P,使得P1AP=A. his doc is nroduced by trial ver
This document is produced by trial version of Print2Flash. Visit www.print2flash.com for more information
设P=(X1,X2,…,Xn) 显然,X≠0(i=1,2,…,m),且X,X2,,Xn线性无关. w6 P1AP=A→AP=PA →(AX,AX2,…,AXn)=(1X,2X2,…,nXn) →AX,=,X,(i=1,2,…,n) ed by trial v of Print2Flash Visi
This document is produced by trial version of Print2Flash. Visit www.print2flash.com for more information