Online Minimum Matching in Real-Time Spatial Data: Experiments and Analysis Yongxin Tong 1, Jieying She 2, Bolin Ding 3, Lei Chen Tianyu Wo1, Ke Xu 1 Beihang University The Hong Kong University of Science and Technology 3 Microsoft Research ”京航堂航天学而恐楼欢眼 Microsoft BEIHANG UNIVERSITY SCIENCE AND TECHNOLOGY Research
Online Minimum Matching in Real-Time Spatial Data: Experiments and Analysis Yongxin Tong 1 , Jieying She 2 , Bolin Ding 3 , Lei Chen 2 , Tianyu Wo 1 , Ke Xu 1 1 Beihang University 2 The Hong Kong University of Science and Technology 3 Microsoft Research
Outline o Background and Motivation ● Problem statement o Representative algorithms o The greedy algorithm Revisited ● Experiments Conclusion
Outline ⚫ Background and Motivation ⚫ Problem Statement ⚫ Representative Algorithms ⚫ The Greedy Algorithm Revisited ⚫ Experiments ⚫ Conclusion
Minimum Bipartite Matching(MBM) The problem of minimum bipartite matching MBM)in spatial data is a fundamental issue
⚫ The problem of minimum bipartite matching (MBM) in spatial data is a fundamental issue Minimum Bipartite Matching (MBM)
Minimum Bipartite Matching(MBM) The problem of minimum bipartite matching MBM)in spatial data is a fundamental issue Given a set of service providers and a set of users in a 2D space Y (5,5) 5 W3(3,4) t3(5,5) W2(2,3) t2(2,3)t4(5,3) t1(1,2) W1(3,0) 12345X
⚫ The problem of minimum bipartite matching (MBM) in spatial data is a fundamental issue ⚫ Given a set of service providers and a set of users in a 2D space. Minimum Bipartite Matching (MBM) t1(1,2) t2(2,3) w2(2,3) w3(3,4) w1(3,0) w4(5,5) t3(5,5) t4(5,3) 5 4 3 2 1 1 2 3 4 5 Y X
Minimum Bipartite Matching(MBM) The problem of minimum bipartite matching MBM)in spatial data is a fundamental issue Given a set of service providers and a set of users in a 2D space The MBM problem is to find a maximum-cardinality matching with minimum total distance between the matched pairs Y (5,5) 5432 W3(3,4) t3(5,5) W2(2,3) t2(2,3)t4(5,3) t1(1,2) W1(3,0) Optimal Matching 12345X
⚫ The problem of minimum bipartite matching (MBM) in spatial data is a fundamental issue ⚫ Given a set of service providers and a set of users in a 2D space. ⚫ The MBM problem is to find a maximum-cardinality matching with minimum total distance between the matched pairs. Minimum Bipartite Matching (MBM) t1(1,2) t2(2,3) w2(2,3) w3(3,4) w1(3,0) w4(5,5) t3(5,5) t4(5,3) 5 4 3 2 1 1 2 3 4 5 Y X 𝑤1 𝑤2 𝑤3 𝑡1 𝑡2 𝑡3 𝑤4 𝑡4 Optimal Matching