Prove: since A andA',and p can not change E and B. soB=VxA=V×A+V×Vv=V×A A=A+Vy E=-VP-aA aA OA V(q+) at at at at at aA at ●规范不变性:在规范变换下物理规律满足的动力学方程保持不变 的性质(在微观世界是一条物理学基本原理)
Prove: since and , and can not change E and B, so A A B A A A = = + = A = A + t A t t t A t A E − = − + − = − − = − − ( ) A t = − − t = − l 规范不变性:在规范变换下物理规律满足的动力学方程保持不变 的性质(在微观世界是一条物理学基本原理)
3. Two typical gauges To reduce arbitrariness of potential, we give some constraint-- Gauge fiⅸing。 Symmetry or explicit physical interpretation ● Coulomb gauge condition V·A=0 transverse (横场),V0 longitudinal(纵场)。 o is determined by instantaneous distribution of charge density (similar to static coulomb field)
l Coulomb gauge condition A = 0 3).Two typical gauges transverse (横场), longitudinal (纵场)。 is determined by instantaneous distribution of charge density (similar to static coulomb field) A To reduce arbitrariness of potential, we give some constraint --- Gauge fixing。 Symmetry or explicit physical interpretation
Function satisfies Prove V A'=VA+VVy=oVV=0 ● Lorenz gauge Ludwig Lorenz ondition v4+ a9=o dt Function y satisfies prove:v.A't 1 a =V·4+ V Vu I a1o at t 0 (V·A+ +(V2v c2 at2 satisfy manifest relativistic covariant equations
0 2 Function satisfies = l Lorenz gauge condition 0 1 2 = + c t A A, satisfy manifest relativistic covariant equations Function satisfies 0 1 2 2 2 2 = − c t ) 0 1 ) ( 1 ( 2 2 2 2 2 = + − + c t c t A A = A + = 0 0 2 Prove = 0 1 2 2 2 2 = − c t 2 2 2 2 2 1 1 1 c t c t A c t A − = + + + prove: Ludwig Lorenz
D'Alembert equation 824 10 V(V·A+-x) at Vp+e(VA=_p Prove: substitute E=V×A E=vat Maxwell egs OE V×B=£μoat ·E And using V×(V×A)=V(V·A)-V2A
2 2 2 2 2 0 2 0 1 1 ( ) ( ) A A A J c t c t A t − − + = − + = − Prove:substitute , into Maxwell eqs And using B A = t A E = − − 0 0 0 0 , + = = J E t E B A A A 2 ( ) = ( ) − 4). D’Alembert equation
4. a Under coulomb gauge 02 V c2 at2 So o satisfies Poisson equation as in static case instantaneous interaction? 4. b Under lorenz gauge VA c- at c2 at2
2 2 2 2 2 0 2 0 1 1 A A J c t c t − − = − = − So satisfies Poisson equation as in static case. instantaneous interaction? 4.a) Under coulomb gauge 4.b) Under Lorenz gauge 2 2 2 2 2 2 2 2 0 0 1 1 A A J c t c t − = − − = −