又设d=ms-nt,s,t≥0,则d+nt=ms.于是 xms -1=zd+nr -1=(zd -1)rnr+znr -1. 若f()∈Kz满足fx)|xm-1,f(e)|xn-1,则(fx,x)=1,且f(E)|xm-1,fx)|xt-1,于是 f四1(x2-1)x".由fg)与x互素可得fg川x4-1因此(xm-1,x-1)=x4-1,其中d=(m,. 14.证明此要可了可的次数都大于零,就可以适当为择适合等式 u(r)f(=)+v(z)g(r)=(f(z).g(z)) 的u()与v(),使 s<ts(2ase<s(oa) 9(x) 证明存在多项式s(a),t(〾)∈K可使 s()f)+t(x)g()-(f(,g(r)》 则 f(x) afx) g(x) 4=a9四+a 其中)=0或dgu国<dg可·记e=9四+则由円知 9E) "(Lr))+(). 由假设与积的次数都大于常,所以,)都不是零多项式于是 dg)<des r,)gl可j a(x) 由(*)知 f(x)\ g(x) des(uaa)=ds(va) 多而 deg<deg国,ga f() 习题10-4 1.设(f(x),m(》=1,证明:对如何的多项式g(),都存在多项式h(,使 h(r)f()=g(r)(mod m(r)). 证明:由假设,存在u(),(e)∈K,使 u(ef)+(e)m()=1 所以 g(r)u(r)f(z)+g(x)v(r)m(r)=g(z). 于是 g(z)u(r)f()=g()(mod m(r)). 6
C d = ms − nt, s, t > 0, d + nt = ms. ! x ms − 1 = x d+nr − 1 = (x d − 1)x nr + x nr − 1. f(x) ∈ K[x] f(x) | x m − 1, f(x) | x n − 1, (f(x), x) = 1, F f(x) | x ms − 1, f(x) | x nt − 1, ! f(x) | (x d − 1)x nr . f(x) x @O f(x) | x d − 1. l (x m − 1, xn − 1) = x d − 1, -* d = (m, n). ∗14. ^_: lE f(x) (f(x), g(x)) , g(x) (f(x), g(x)) y2|{, T@$P./$% u(x)f(x) + v(x)g(x) = (f(x), g(x)) u(x) v(x), N deg u(x) < deg µ g(x) (f(x), g(x))¶ , deg v(x) < deg µ f(x) (f(x), g(x))¶ . '(: DqI~ s(x), t(x) ∈ K[x] N s(x)f(x) + t(x)g(x) = (f(x), g(x)). s(x) f(x) (f(x), g(x)) + t(x) g(x) (f(x), g(x)) = 1. (*) S s(x) = g(x) (f(x), g(x)) q(x) + u(x), -* u(x) = 0 k deg u(x) < deg g(x) (f(x), g(x)) . G v(x) = f(x) (f(x), g(x)) q(x) + t(x), (*) u, u(x) f(x) (f(x), g(x)) + v(x) g(x) (f(x), g(x)) = 1. (**) 0 , f(x) (f(x), g(x)) g(x) (f(x), g(x)) y2|{, u(x), v(x) 2`!{I~. ! deg u(x) < deg g(x) (f(x), g(x)) . (**) u deg µ u(x) f(x) (f(x), g(x)) ¶ = deg µ v(x) g(x) (f(x), g(x)) ¶ , IJ deg v(x) < deg f(x) (f(x), g(x)) . % & 10–4 1. (f(x), m(x)) = 1, ^_: 4LI~ g(x), 2DqI~ h(x), N h(x)f(x) ≡ g(x) (mod m(x)). '(: 0 , Dq u(x), v(x) ∈ K[x], N u(x)f(x) + v(x)m(x) = 1. g(x)u(x)f(x) + g(x)v(x)m(x) = g(x). ! g(x)u(x)f(x) ≡ g(x) (mod m(x)). · 6 ·
时h(a)=g(a)u(x),则 h(c)fz)三g(c)(modm(x》 *2.设m1(x),…,m,(x)为一组可可互素的多项式,证明:对如求的多项式()…,(x,都存在 多项式F(,使 F(e)=f(x)(modm4(e》, i=1.,8 证明时M m.()..m.().B.(=得则Rme)=a i≠方.存在()使(使得1) hi()Ri(r)fi()(mod mi(r)) 时 Fe)=∑h:(e)R(e, Fa)=∑,(e)R,(e)(modm(e》 =h(r)Rx()(mod mx(x)) 三fa(e)(mod mk(e》. 3.设m()为复系数多项式条m(0)≠0.证明:存在复系数多项式f(x),使 fP(x)≡x(modm(r》. 证明(a)首零证明对如果的a≠0,同余式 fP()三x(mod(x-a)) 有解设√a是a的如果一个平方根,则 (红-a)m=(丘-v@(vE+va)m=(W丘-vam(v丘+vam =(h(z)vi-g(r))(h(z)vi+g(z))=h2(z)r-g2(z). 于是 g2(r)=h2(r)r (mod(z-a)") 而h(a)va+g(a)=(Va+V回m≠0,而h(a)va-g(a)=(Wa-Vam=0,因此g(a)h(a)≠0,多而 (h(r,(红-a)m)=l,存在h1(a)∈K回使h()h()三1(mod(c-a)m).于是 (hi(r)g(z))2=z (mod (x-a)") 取fx)=h(e)9(e),则有 f(x)≡x(mod(x-a"). (b)设m()=(c-a)m(z-a2)m2…(c-a,)m,a≠a对i≠i.则(c-a1m,…,(z-a,)m 可可互素.由(a,存在()∈K可,使 f2(r)=r (mod (r-ai)"M). 由使得2,存在f(x)使 f)三f(a)(mod(-a)m) 于是 f()≡x(mod(-a)m) 7
S h(x) = g(x)u(x), h(x)f(x) ≡ g(x) (mod m(x)). ∗2. m1(x), · · · , ms(x) .f]@@I~, ^_: 4LI~ f1(x), · · · , fs(x), 2Dq I~ F(x), N F(x) ≡ fi(x) (mod mi(x)), i = 1, · · · , s. '(: S M(x) = m1(x)m2(x)· · · ms(x), Ri(x) = M(x) mi(x) . (Ri(x), mi(x)) = 1, mj (x) | Ri(x), i 6= j. Dq hi(x) N (NO 1) hi(x)Ri(x) ≡ fi(x) (mod mi(x)) S F(x) = Xs i=1 hi(x)Ri(x), F(x) ≡ Xs i=1 hi(x)Ri(x) (mod mk(x)) ≡ hk(x)Rk(x) (mod mk(x)) ≡ fk(x) (mod mk(x)). ∗3. m(x) .syI~, F m(0) 6= 0. ^_: DqsyI~ f(x), N f 2 (x) ≡ x (mod m(x)). '(: (a) !{^_45 a 6= 0, am f 2 (x) ≡ x (mod (x − a) m) $. √ a ! a 45fv/>x, (x − a) m = ((√ x − √ a)(√ x + √ a))m = (√ x − √ a) m( √ x + √ a) m = (h(x) √ x − g(x))(h(x) √ x + g(x)) = h 2 (x)x − g 2 (x). ! g 2 (x) ≡ h 2 (x)x (mod (x − a) m) J h(a) √ a + g(a) = (√ a + √ a) m 6= 0, J h(a) √ a − g(a) = (√ a − √ a) m = 0, l g(a)h(a) 6= 0, IJ (h(x),(x − a) m) = 1, Dq h1(x) ∈ K[x] N h1(x)h(x) ≡ 1 (mod (x − a) m). ! (h1(x)g(x))2 ≡ x (mod (x − a) m) Q f(x) = h1(x)g(x), $ f 2 (x) ≡ x (mod (x − a) m). (b) m(x) = (x − a1) m1 (x − a2) m2 · · ·(x − as) ms , ai 6= aj i 6= j. (x − a1) m1 , · · · ,(x − as) ms @@. (a), Dq fi(x) ∈ K[x], N f 2 i (x) ≡ x (mod (x − ai) mi ). NO 2, Dq f(x) N f(x) ≡ fi(x) (mod (x − ai) mi ) ! f 2 (x) ≡ x (mod (x − ai) mi ) · 7 ·