③解方程:由变分原理 Hudt E CU,+C,Un)H(cU+cndr ∴E y可去掉,实函数y=y (cy +(cy +cndt c2 H IVaHyaattcacblyaHyE bdt+cacb v Hyadr +bvbHvodr calvadr+2ccbvavBdr dT
③解方程:由变分原理 = d H d E * * ˆ + + + + = c c c c d c c H c c d E a a b b a a b b a a b b a a b b ( )( ) ( ) ˆ ( ) *可去掉,实函数= * + + + + + = c d c c d c d c H d c c H d c c H d c H d a a a b a b b b a a a a b a b a b b a b b b 2 2 2 2 2 2 2 ˆ ˆ ˆ ˆ
(Cy +cnH(CU +cndt E(C,Ch= CU +C ar a Ndr 由于H2的两个核是等同的,V,W是归一化的,将 上式展开并令 H=vHd=」vvdr=Hm dc= dt=s=1 a a r a bb da T三
+ + + = c c d c c H c c d E c c a a b b a a b b a a b b a b 2 ( ) ( ) ˆ ( ) ( , ) 由于H2 +的两个核是等同的,a,b是归一化的,将 上式展开并令: a a a a b b Hb b H = H d = H d = ˆ ˆ a b a b b a Hb a H = H d = H d = ^ ^ = = = =1 a a a b b b b S d d S a a b a b b a b a S = d = d = S
CH +2c ch, +Ch X E(Ca, Ch) s+2c +C Y ad bab bbb aE aE E取极值的条件: 0 0 OE1axⅩaY 即 acy ac Ya aE 1 aX X OY 0 ac. Y ac ac aX aY E 0 C oX aY E b
Y X c S c c S c S c H c c H c H E c c a a a a b a b b b b a a a a b a b b b b a b = + + + + = 2 2 2 2 2 2 ( , ) E取极值的条件: 0, = 0 = a b c c E E 即: = − = = − = 0 c Y Y X c X Y 1 c E 0 c Y Y X c X Y 1 c E b b b a a a 2 2 = − = − 0 0 b b a a c Y E c X c Y E c X
求极值,即为体系的能量E aX aY E C OX aY E C X=CHaa+2C ch Hab +Chubb Y=CS +ccs,+Cs bbb OX Y =2CH +2C,h 2c S+2c OX =2Ch+2c H =2Cb Sbb +2ca Sab C J2caHaa+ 2cbHab-E2ca Saa+ 2 cb ab)=0 2c, Hb +2c Hab-E(2C,Shh +2C Sab)=0
求极值,即为体系的能量E = − = − 0 0 a b b a c Y E c X c Y E c X a aa a b ab b Hbb X c H c c H c 2 2 = + 2 + a aa a b ab b Sbb Y c S c c S c 2 2 = + 2 + a aa b ab a c H c H c X = 2 + 2 a aa b ab a c S c S c Y = 2 + 2 b bb a ab b c H c H c X = 2 + 2 b bb a ab b c S c S c Y = 2 + 2 + − + = + − + = 2 2 (2 2 ) 0 2 2 (2 2 ) 0 b b b a a b b b b a a b a a a b a b a a a b a b c H c H E c S c S c H c H E c S c S
(Haa - t(hab-ESab cb=o H2的久期方程 (H2-ES0)2+(Bb-ES=0 关于Cn、Cb的线性齐次方程组, 得到非零解的条件:系数行列式为0。 H-ESH b ES b 二阶久期行列式 H,-ES b H,-ES H bb bb dt=l bb=Byu bat=I H-E H,-ES b H-ES b H-E
− + − = − + − = ( ) ( ) 0 ( ) ( ) 0 a b a b a b b b b b a a a a a a b a b b H ES c H ES c H ES c H ES c 关于ca、cb的线性齐次方程组, 得到非零解的条件:系数行列式为0。 = 0 − − − − ab ab bb bb aa aa ab ab H ES H ES H ES H ES 二阶久期行列式 = = = = 1 1 * * S d S d bb b b aa a a = 0 − − − − H ES H E H E H ES ab ab bb aa ab ab H2 +的久期方程