由式(1)得B=0,波函数为:v(x)= a sin kx 由式(2)得 asin ka=0,于是 n兀 ka=n兀.k (n=1,2,3 a :k=√2mE/h2=m/a 由此得到粒子的能量En 丌2h E n=1,2,3 2ma En称为本问题中能量E的本征值。势阱中的粒子,其能量 是量子化的
由式(1)得 B = 0 ,波函数为: 由此得到粒子的能量En (x) = Asin kx = , = (n =1,2,3,) a n k a n k 由式(2)得 Asin ka = 0 ,于是 即: 2 / / , 2 k = mE = n a , 1,2,3, 2 2 2 2 2 = = n n ma En En 称为本问题中能量E 的本征值。势阱中的粒子,其能量 是量子化的
势阱中粒子的能级图 E ( 2ma E 当n=1, E≈nh2 2ma 8ma n=3 E1即基态能级 E=ne E n叫作主量子数 a
当 n = 1, n 叫作主量子数 2 2 2 2 2 1 2 8ma h ma E = = 1 2 En = n E 势阱中粒子的能级图 o a x n =1 n = 2 n = 4 n = 3 E E1 E2 E3 E4 E1即基态能级 2 2 2 2 2 n ma En =
与E相对应的本征函数,即本问题的解为: n兀 y(x)=asin( 0<x<a) a 式中常数A可由归一化条件求得。 ∫Vn(x)a= n兀 )x=A==1 得到A=√2/a 最后得到薛定谔方程的解为: S 0<x<a) a
与 E 相对应的本征函数,即本问题的解为: 式中常数A可由归一化条件求得。 最后得到薛定谔方程的解为: ( ) sin( x) (0 x a) a n n x = A 1 2 ( ) sin ( ) 2 2 0 2 2 = = = + − a x dx A a n x dx A a n 得到 A = 2/ a sin( ) (0 ) 2 ( ) x x a a n a x n =
讨论 1势阱中的粒子的能量不是任意的,只能取分立值,即 能量是量子化的。能量量子化是微观世界特有的现象, 经典粒子处在势阱中能量可取连续的任意值。 电子(m=9.1×1031千克): ①若势阱宽a=10A,则En=0.75nev,量子化明显 ②若a=1cm,则E=0.75×1014ev,量子化不明显。 2能量为En的粒子在x-x+内被发现的概率: dW=v (x)dx sIn
1 势阱中的粒子的能量不是任意的,只能取分立值,即 能量是量子化的。能量量子化是微观世界特有的现象, 经典粒子处在势阱中能量可取连续的任意值。 讨论 2 能量为En的粒子在 x-x+dx 内被发现的概率: xdx a n a dW n x dx 2 2 sin 2 = ( ) = 电子(m=9.1×10-31千克): ①若势阱宽a=10Å,则 En=0.75neV, 量子化明显; ②若a=1cm,则En=0.75×10-14eV ,量子化不明显
波函数 几率密度分布 shH ws 2sin ) e ∧∧ 2y cf 3丌 3 sin(-x) n=. 8ma 丌 n(=x)n=2 C E1 sin(-x) n=1
0 ax (x) 0 a x 2 (x) 波函数 几率密度分布 n=3 n=2 n=1 n=4 sin( ) 2 8 1 2 1 2 2 1 x ma a a h E = = ) 2 sin( 2 8 2 2 2 2 2 2 x ma a a h E = = ) 3 sin( 2 8 3 2 3 2 2 3 x ma a a h E = = ) 4 sin( 2 8 4 2 4 2 2 4 x ma a a h E = =