Ac-MoAg-AlAc-Mo (Actinium-Molybdenum)95.94227.0278L.Brewer and R.H.Lamoreaux; [Molybdenum]A calculated schematic phase dia-gram for the Mo-Ac system appearsin [Molybdenum], which shows aliquid-liquid immiscibility gap.Al(Silver-Aluminum107.868226.98154A.J.McAlister;submittedtotheAPDProgramThe equilibrium phases of the Ag-shells of scattering around super-ments reported of the relativeAl system are: the liguid, L; the Ag-structurepositions(42Guil,[65Auel,amounts of massive and martensiticrich fcc terminal solid solution, (Ag),[71Gral).products.In addition to the GP zones, awith maximum solubility of about20.4 at.% Al at about 450 °C; the Al-metastable cph 8'phase is observed05Pet: G.I.Petrenko,Z.Anorg.Chem.,46,rich fcc terminal solid solution, (Al),in aging of Al-rich alloys. It appears49-59(1905)inGermanwith maximum solubility of aboutat aging times longer than those re-31Hoa: T.P.Hoar and R.K.Rowntree, J.23.5 at.% Ag at 567 °C; the cph in-quired for the initiation of zone for-Inst.Met.,45,119-124(1931)termediate phase, , stable belowmation, and grows in theform of40Hum: W.Hume-Rothery,G.V.Raynor,about 727 °C, extending from aboutWidmanstatten plates.P.W. Reynolds, and H.K. Packer, J.Inst.23.5at.%Alat611°C to 41.9at.%AlMassive am, μm, and Om products,Met.,66,209-239(1940).41Foo: F. Foot and E.R. Jette, Trans.at 567 °C; the high-temperature bccas well as three martensitic struc-AIME,143,151-157(1941).intermediate phase, β, stable abovetures structurally compatible with the42Gui: A.Guinier, J.Phys.Rad., Paris,about 603C and extendingfromβ phase,were observed by 172Gupl,8,124-139(1942)inFrenchabout21.6at.%Alat779Cto29.8each occurring to a greater or less ex-49 Ray:G.V.Raynor and D.W.Wakeman,tent at all three compositions. Evi-at.% Al at 727 °C; and the low-tem-Philos.Mag.,40, 404-417 (1949).perature intermediate phase, μ, re-dently,β was the first solid phase to50Owe:E.A.Owen and D.P.Morris,J.portedtohavethecomplexcubicβMnform on quenching.Nomention wasInst.Met..76,145-168(1949-1950)structure,stablebelowabout448Cmadeof retainedβ,norwereassess-6oWil: T.C. Wilder and J.F. Elliot, J.with the single-phase field extendingfrom about 21.2 to 24.3 at.% Al at 300Ag-Al Three-Phase Equilibria and Congruent Transformations'C.Invariant temperatures in the as-Temper-sessed phase diagram were obtainedComposition,ature,Reactionby averaging the values of [05Pet],Reactionat.% Al'Ctype[31Hoa],[40Hum],[41Foo],[49Ray],21.6± 0.520.5±0.5(Ag) + L=β17.4± 1.0778±2Peritectic[50Owe],[70Mas],and [78Rob].in-5.......29.8±1.032.7±1.032.1 ±1.0726± 3PeritecticB+Lz8variant compositions were obtained20.3±1.023.7 ± 0.523.5 ± 0.5610±3Peritectoid(Ag) +β=8by extrapolation of phase boundaries24.4 ± 0.4603 ± 4Congruentβ=841.9±0.576.5 ± 0.5567 ±to the invariant temperatures. TheL+ (Al)...61.0±2.01Eutectic23.5 ± 0.722.9 ± 1.0450±3(Ag) +20.4 ± 1.0Peritectoiddata of [60Wil] and [75Barl were also0961.93Melting pointLz(Ag)used to construct the assessed dia-100660.452Melting pointLz(Ag)gram.Aging of Al-rich Ag-Al alloys,quenched from the fcc solid solutionAg-Al Crystal Structure Dataor from the liquid, has been exten-sively studied. From the data, it hasStruktur-become clear that two types of Gui-PearsonSpaceComposition,berichtnier-Preston (GP) zones occur, GP-IPhasePrototypeat.%Agsymbolgroupdesignationforming above~170°C andGP-II be-0.0CF4A1CuFm3m(Ag)low.Anumber of reversible propertyCI2A2W20.5to29.8Im3mβdifferences distinguish the two tem-22.9 to 41.9hP2P6s/mmcA3MgFperature regimes. Above 170 °C in thecP20P4,32A13βMn21to24GP-I region, diffuse X-ray scatteringP2,3(a)...displays strong halos around the di-100cF4Fm3mA1Cu(Al)rect. beam and Bragg peaks. Aging(a) ~300 °C.below 170 °C produces asymmetric3BinaryAlloyPhase Diagrams
Ag-AlAssessed Ag-AlPhase DiagramWeight Percent Aluminum10203040506070809010001000寸961.93°c900-L800779°℃728°ccβ700660.452℃c(Ag)610600567℃c0(A1)500450400u300200工2030506080901000104070Atomic Percent AluminumAgAlAtomic Percent Aluminum60708090010203040501001000+.......1961.93°c900LA800779°c726°cc700(Ag)660.452°c610600567°℃O(A1)5004504003002001002030405060807010090Weight Percent AluminumAgA1A.J.McAlister, submitted to the APDProgram.4Binary Alloy PhaseDiagrams
Ag-Al, Ag-As, Ag-AuAg-B, Ag-BaElectrochem.Soc.,107,628-635 (1960).71Gra: J.E. Gragg and J.B. Cohen, Acta78Rob: G.D.Roberts and G.A. Chadwick,65Aue: H. Auer and V. Gerold, Z. Me-Metall.,19, 507-519 (1971).Scr.Metall.,12,381-382(1978).tallkd.,56,240-248 (1965)in German.72Gup: S.P. Gupta, Mater. Sci. Eng., 10,70Mas: G. Massart, P. Desre, and E. Bon341-356(1972)75Bar: S. Barat and J.K. Mukherjee, In-Completeevaluationcontains5figures,3nier,J.Chim.Phys.,67,1485-1488dian J.Tech., 13, 510-519 (1975).tables, and 71 references.(1970),As (Silver-Arsenic)107.868274.9216E:A3.The Ag-As phase diagram is re-drawn from [Elliott] and [Hansen].Ag-Au (Silver-Gold)107.8682196.9665J H. Okamoto and T.B. Massalski; Bull. Alloy Phase Diagrams, 4(1), Jun 1983The equilibrium phases of the Ag.Ag-Au Crystal Structure DataAu system are: (1) the liquid, L; and(2) the fcc continuous solid solution,Composition,PearsonSpaceStrukturberichtPhasePrototype(Ag, Au). The assessed phase dia-at.%Ausymbolgroupdesignationgram is based primarily on the work0cF4A1Cu(Ag)Fm3mof159Whil,withreviewofthework100cF4Fm3mA1Cu(Au)of [54Wag], [57Whil, and [61Coo].Theliquidus and the solidus, as determined by thermal arrest methods andby thermodynamic evaluation, areresenting the phase relationships.57Whi:J.L.White,R.L.Orr,andR.Hultseparated by a gap of about 2 C.renActaMetall.5(12).747-760(1957)Short-range order has been ob-Because all recent thermodynamic59Whi: J.L.White, Trans.AIME,215(1),served over a wide composition range,measurements do not show any ma-178-181 (1959)but long-range order has not been objor inconsistency with the thermody-61Coo:C.J.Cookeandw.Hurmeserved experimentally, although itnamic parameters on which [57Whi]Rothery,Acta Metall., 9(10), 982 (1961).may exist at low temperatures.and [59Whi] based their calculationof the phase diagram, their calcula-54Wag: C.Wagner, Acta Metall.,2(2), 242Complete evaluation contains 4figures,7tion is accepted as most nearly rep-249 (1954).tables, and 120 references.-B (Silver-Boron)10.81107.8682No compounds.A hypothetical schematic Ag-Bphase diagram appears in (Moffatt).-Ba (Silver-Barium)107.8682137.33The Ag-Ba phase diagram is re-drawn from [Hansen].BinaryAlloyPhaseDiagrams5
Ag-AsAg-As Phase DiagramWeight PercentArsenic10203040506070CB0901001000TTTTTTTT981.93℃900L800℃n7006007.810582℃540°℃11500 (Ag)N$46℃9.5400(As) -3001020305010040608090100Atomic PercentArsenicAsAgAtomicPercentArsenic506070n1020304080901001000子TT961.93℃900L800:7006007582℃5.5540°℃(Ag)18500Ne146°℃6.8400(As)-3000102030405060809010070WeightPercent ArsenicAsAgFrom [Elliottl and (Hansenl.6Binary Alloy Phase Diagrams
Ag-AuAssessed Ag-Au Phase DiagramWeight Percent Gold1020305060708030901075E1064.43°℃L105081025-1000975081.83°c(Ag,Au)9502001030405060708010090Atomic Percent GoldAgAuGoldAtomicPercent2050103040607080901001075-1064.43℃cL1050D01025n1000-975-(Ag,Au)061.93°c9506080010203040507090100Weight Percent GoldAuAgH.Okamoto and T.B.Massalski, 1983.7BinaryAlloyPhaseDiagrams