CarbonanodeImprovesnumberofcyclesAccommodateschangesingraphiteOptionalPolymerbinderadditiveGRAPHITECoppercurrentSeparatorcollector10μmSEMpictureofaTIMCALtailor-madegraphiteespeciallyoptimizedasnegativeelectrodematerial
Carbon anode Improves number of cycles Accommodates changes in graphite
2DFilmofCarbonNanofibersElasticallyAstrictedMnOmicroparticles:AFlexibleBinder-FreeAnodefor Highly Reversible Lithium lon Storage(a)aMnoFigure 1 SEM images of MnO (a, a') and CNF/MnO (b, b’)The insets are the digital photos of both samples,200mmXRDpatterns ofMnO, pureCNFandthecompositeCNF/MnO (c),(b"and the EDS mapping images of CNF/MnO (c).Mno200nm2m(c)MnO2um2umCNF/MnOMnCNFSmall, (2017),DOl: 10.1002/smll.2016041822um3020405o607010802-Theta7deg
2D Film of Carbon Nanofibers ElasDcally Astricted MnO microparDcles: A Flexible Binder-Free Anode for Highly Reversible Lithium Ion Storage Figure 1 SEM images of MnO (a, a’) and CNF/MnO (b, b’). The insets are the digital photos of both samples, XRD pa:erns of MnO, pure CNF and the composite CNF/MnO (c), and the EDS mapping images of CNF/MnO (c’). Small, (2017), DOI: 10.1002/smll.201604182
(a)(b)CNF/MnO3.0-2.0-1"cycle2.520cycle11523ncyele2.001.01a04cyeel1.5379770070.5Lithium insertionCNF/MnO1.0-CPureMnO0.0-0.5LAH-0.5Lithium.extractio0.0.2.52.01.00.502003.01.50.0400600Voltage/VSpecific capacity/mAhg"vsLi/Li(d)(c)CNF/MnOCNF/MnO-13-pureMnO-13pureMnO-14-14-okdischarge15-D-1616chargeS1-17--17--18--19--18-2.42.11.81.5.1.20.9.0.60.30.00.00.52.51.0.Potential/VPotential/Vvs.Li/Livs.Figure 2 Cycelic voltammetry profiles of flexible film CNF/MnO between O and 3 V at a scan rate of 0.1 mV s-l (a). GITT curves (b), and diffusion coefficients of Li+in pure MnO, CNF/MnO at discharge (c) and charge (d) processes, respectively
Figure 2 Cyclic voltammetry profiles of flexible film CNF/MnO between 0 and 3 V at a scan rate of 0.1 mV s-1 (a). GITT curves (b), and diffusion coefficients of Li+ in pure MnO, CNF/MnO at discharge (c) and charge (d) processes, respectively
14001001400ChargeDischarge50mA3.0-CNF/MnOCurrent density:0.2Ag.sp1200suve1200-CNP-Noe2.5-80Mno10001000Z2.0DischargeCoulombicChargeF60aee50mAs800800-富Effieieney0.1AgCNF/MnOCurrentdensity:0.2Ag600600-D.2AgedeCNF-40C.1.0-CNF/MnO0.5AgMnO.i400-400-CNFTAB0.5ae20MnO200-200-0.0-0-C0-+00101520253035404550500102030405020040060080010001200CyelenumberCycle numberSpecificcapacity/mAhgFigure 3 The initial charge/discharge profiles (a), cycling life and the corresponding Columbic efficiencies (b) of MnO, CNF/MnOand CNF carried out under the current density of 0.2 A gr!
Figure 3 The initial charge/discharge profiles (a), cycling life and the corresponding Columbic efficiencies (b) of MnO, CNF/MnO and CNF carried out under the current density of 0.2 A g-1
(a)(b)CPE1CPE2CPE3WWu150600.WWRsWRctRsei Re500-120CNF/MnOCI400pureMnO90.NNCNF/MnO300-60.20010.30.100CNF/MnOG102030pureMnO040C0-0-03060901201501800100200300400500600700Z/QZ/QFigure 4 EIS fitted profiles of MnO and CNF/MnO electrodes at the 4 discharge state (a) and the 20th discharge state (b), The inset in (a) is theschematic conductive channel for electrons and lithium ions, and the inset in (b) is the equivalent circuit fitting ElS data. Hollow dots represent theexperimental data and the line represents the fitted data
Figure 4 EIS fitted profiles of MnO and CNF/MnO electrodes at the 4th discharge state (a) and the 20th discharge state (b). The inset in (a) is the schematic conductive channel for electrons and lithium ions, and the inset in (b) is the equivalent circuit fitting EIS data. Hollow dots represent the experimental data and the line represents the fitted data