幻灯片6Describe wave properties of an electronSchrodinger equation(1926)What Is Life?0-H业ynot aphysicalohserExpressed as differentialequationV(r.r)+V(r.t)甲(r.t)Single particle,non-relativisticP(r.r)Steady-st-independentV(r)allowsthe separatiorw(r)+(r)(r)=E(r)of variables r and TKinetic energy + Potential energy = Total EnergyQuantumharmonicoscillatorAstationarystateisnotmathematicallyconstant甲(r,t)=(r)e%The probability that the particle is at location xiindependentoftim(,)=e/@(2,0)e//(2,0)2=(2,)薛定的波函数。1926年连发4篇文章,单手建立了波动力学,课本的经典描述。1、波动力学描述氢原子;2、量子谐振子,刚性转子,双原子分子;3、证明波动力学与矩阵力学的等价;4、含时波函数,引进复数波函数减少求导次数。但是现在实际上计算中常用的是矩阵力学的表示方式,波动力学的表达多用来教学、解析模型。除了薛定谔的猫以外,最著名的可能是他的一本书ErwinSchrodinger(1944),“What Is Life?:The Physical Aspect of the LivingCell"【http://www.whatislife.ie/downloads/What-is-Life.pdf]:1、其中的生命就是非周期性的晶体(aperiodiccrystal);2、基因以化学键和分子构型存在;3、基因突变=量子跃迁;4、生命=负熵;5、引发许多物理学家,如JamesD.WatsonFrancisCrick转向生物研究,导致生物物理的发展。学生有LinusPauling【1954化学奖,1962和平奖;后又有Linux的作者linusTorvalds的父母仰慕Pauling】,FelixBloch【1952诺贝尔物理奖】等人。"had an unconventional personal life"1、薛定谔在德布罗意的物质波的思路上将粒子的状态方程以波函数的形式进行了描述。含时波函数表达简洁,左边是波函数psi对时间求导,h-bar是约化
幻灯片 6 = Describe wave properties of an electron Schrödinger equation (1926) Expressed as differential equation: Kinetic energy + Potential energy = Total Energy Steady-state, or time-independent: V(r) allows the separation of variables r and T Single particle, non-relativistic: A stationary state is not mathematically constant The probability that the particle is at location x is independent of time Quantum harmonic oscillator 6 What Is Life? Ψ not a physical observable! 薛定谔的波函数。1926年连发4篇文章,单手建立了波动力学,课本的经典描 述。 1、波动力学描述氢原子; 2、量子谐振子,刚性转子,双原子分子; 3、证明波动力学与矩阵力学的等价; 4、含时波函数,引进复数波函数减少求导次数。 但是现在实际上计算中常用的是矩阵力学的表示方式,波动力学的表达多用来 教学、解析模型。 除了薛定谔的猫以外,最著名的可能是他的一本书Erwin Schrödinger (1944), “What Is Life? : The Physical Aspect of the Living Cell“【http://www.whatislife.ie/downloads/What-is-Life.pdf】: 1、其中的生命就是非周期性的晶体(aperiodic crystal); 2、基因以化学键和分子构型存在; 3、基因突变=量子跃迁; 4、生命=负熵; 5、引发许多物理学家,如 James D. Watson Francis Crick转向生物研究,导致生 物物理的发展。 学生有Linus Pauling【1954化学奖,1962和平奖;后又有Linux的作者linus Torvalds的父母仰慕Pauling】,Felix Bloch【1952诺贝尔物理奖】等人。 "had an unconventional personal life" 1、薛定谔在德布罗意的物质波的思路上将粒子的状态方程以波函数的形式进行 了描述。含时波函数表达简洁,左边是波函数psi对时间求导,h-bar是约化
planck常数,=h/2pi。i是虚数,右边是哈密顿,能量算符作用于波函数psi上。2、对于一个粒子,且不考虑相对论效应,即其运动速度远小于光速时,含时波函数可以展开为。左侧没有变化,波函数是位置r和时间t的函数。右边的哈密顿算符展开为动能和势能两项。动能项包括波函数对位置的二价导数,√2istheLaplacian拉普拉斯算符,势能项简单的是势能与波函数的乘积。3、如果粒子处于稳态,那么就可以用不含时波函数进行描述。4、【稳态或者不含时波函数不代表波函数是常数,它也随时间进行相位变化。】5、不变或者稳定的是几率,在空间某点的粒子出现几率=稳态波函数的模的平方,这个值不随时间变化。例如量子谐振子的几个状态,如果是稳态,则它的波函数的实部和虚部都随时间变化,而谐振子空间出现几率不变。如果不是稳态,则其几率会随时间变化。-6、为何动能项前面有个负号?一句话解释:波函数含有exp(i·p·r/h)部分,两次求导会产生-1.https://physics.stackexchange.com/questions/9557/why-is-there-a-minus-sign-in-this-wave-equation-derivationWhyisthereaminussigninthiswaveequationderivation(Px=-i-h·o/oxor-inkinetic part ofthe schrodingerequation)?Px=hk==-ih-0/0x, E= p^2/2m = -(h^2/2m)-0^2/0x^2The relative sign is not justa convention.OnceyoudecidethatEisrepresentedbyiho/ot,中(t) =-iEt/hand (r) =i·k·x/h or 中=Φ(r) (t) = exp[i (p*:x -Et)/h)there must be a minus sign in the formula for p, namely p=hk=-iho/oxp. Or viceversa.The second derivative of (r)to rwill producea-1,whichwill cancel the-1 infrontof kinetic term, which is produced by p.The relativeminussign inp,Ep,Emaybecome invisible if you onlyact withsecondderivatives -squared momentum, squared energy-but it is visible if you act with firstpowers of the operators.AevendeeperexplanationDe Broglie's wave-or a waveassociated witha particle-is proportional toexp[i (px -Et)/h]TherelativesignbetweenpxandE·tindeBroglie'sformulaaboveisphysicallynecessarybecauseonlyEt-pxisthecorrectLorentzianinnerproductofthevectors(E,p)and(t,x):therelativeminussigncomesfromtheoppositesignsofspaceandtimeinthesignatureofspacetime
planck常数,=h/2pi。i是虚数,右边是哈密顿,能量算符作用于波函数psi上。 2、对于一个粒子,且不考虑相对论效应,即其运动速度远小于光速时,含时波 函数可以展开为。左侧没有变化,波函数是位置r和时间t的函数。右边的哈密 顿算符展开为动能和势能两项。动能项包括波函数对位置的二价导数,∇ 2 is the Laplacian拉普拉斯算符,势能项简单的是势能与波函数的乘积。 3、如果粒子处于稳态,那么就可以用不含时波函数进行描述。 4、【稳态或者不含时波函数不代表波函数是常数,它也随时间进行相位变 化。 】 5、不变或者稳定的是几率,在空间某点的粒子出现几率=稳态波函数的模的平 方,这个值不随时间变化。 例如量子谐振子的几个状态,如果是稳态,则它的波函数的实部和虚部都随时 间变化,而谐振子空间出现几率不变。如果不是稳态,则其几率会随时间变 化。 6、为何动能项前面有个负号?一句话解释:波函数含有exp(i⋅p⋅r/ℏ)部分,两次 求导会产生-1. https://physics.stackexchange.com/questions/9557/why-is-there-a-minus-sign-inthis-wave-equation-derivation Why is there a minus sign in this wave equation derivation (Px = -i·ℏ·∂/∂x or – in kinetic part of the schrodinger equation)? Px =ℏk== -iℏ·∂/∂x, E = p^2/2m = - (ℏ^2/2m)·∂^2/∂x^2 The relative sign is not just a convention. Once you decide that E is represented by iℏ∂/∂t, ψ(t) = -iEt/ℏ and ψ(r) = i⋅k⋅x/ℏ or ψ=ψ(r) ψ(t) = exp[i (p⃗ ⋅x⃗ −Et)/ℏ] there must be a minus sign in the formula for p, namely p=ℏk=−iℏ∂/∂xp. Or vice versa. The second derivative of ψ(r) to r will produce a -1, which will cancel the -1 in front of kinetic term, which is produced by p. The relative minus sign in p, E·p, E may become invisible if you only act with second derivatives - squared momentum, squared energy - but it is visible if you act with first powers of the operators. A even deeper explanation De Broglie's wave - or a wave associated with a particle - is proportional to exp[i (p⃗ ⋅x⃗ −Et)/ℏ] The relative sign between p⃗ ⋅x⃗ and E⋅t in de Broglie's formula above is physically necessary because only Et−p⃗ ⋅x⃗ is the correct Lorentzian inner product of the vectors (E,p⃗) and (t,x⃗ ): the relative minus sign comes from the opposite signs of space and time in the signature of spacetime