(Cva +Chh H(coya+)dt E(Ca, Ch) (cv +ch)dt 由于H2+的两个核是等同的,va,v是归一化的,将 上式展开并令: Hyadt=vbHvsdr=hbb Hwid HudT=h avar=livadi 7三 bb da
+ + + = c c d c c H c c d E c c a a b b a a b b a a b b a b 2 ( ) ( ) ˆ ( ) ( , ) 由于H2 +的两个核是等同的,a,b是归一化的,将 上式展开并令: a a a a b b Hb b H = H d = H d = ˆ ˆ a b a b b a Hb a H = H d = H d = ^ ^ = = = =1 a a a b b b b S d d S a a b a b b a b a S = d = d = S
CH+2C Ch,+Ch X E(C,Ch)= S+2C C s bab +C bbb Y aE OE E取极值的条件 b aE 1 aX X aY acY ac a aE 1 aX X aY 2 0 ac. Y ac. Ya OX E OC oX aY E
Y X c S c c S c S c H c c H c H E c c a a a a b a b b b b a a a a b a b b b b a b = + + + + = 2 2 2 2 2 2 ( , ) E取极值的条件 : 0, = 0 = a b c c E E 即: = − = = − = 0 c Y Y X c X Y 1 c E 0 c Y Y X c X Y 1 c E b 2 b b a 2 a a = − = − 0 0 b b a a c Y E c X c Y E c X
求极值,即为体系的能量E ax aY E OC aX aY E 0 X=C4Haa +2c C,Hab+Cb Hbb Y=CS +2C,+cs bbb OX =2CH+2C h aY a ad b ab 2CS +2c bab =2C.H+2C H b 2Cb Sbb+2casab OC 2C Haa+2c,Hob-E(2C Saa +2c,h)=0 12cH+2c1H-E(2cS0+2c,Sm)=0
求极值,即为体系的能量E = − = − 0 0 a b b a c Y E c X c Y E c X a aa a b ab b Hbb X c H c c H c 2 2 = + 2 + a aa a b ab b Sbb Y c S c c S c 2 2 = + 2 + a aa b ab a c H c H c X = 2 + 2 a aa b ab a c S c S c Y = 2 + 2 b bb a ab b c H c H c X = 2 + 2 b bb a ab b c S c S c Y = 2 + 2 + − + = + − + = 2 2 (2 2 ) 0 2 2 (2 2 ) 0 b b b a a b b b b a a b a a a b a b a a a b a b c H c H E c S c S c H c H E c S c S
(Hoo-ESOco t(ha- eso)ch=0 H2+的久期方 l(Hab-ESab)ca(Hbb-ES)C=0 程 关于ca、C的线性齐次方程组 得到非零解的条件:系数行列式为0 H-ES H b ES 0 二阶久期行列式 Hk-ES b b Hu-ES H bb bb dt=1 dt=1 H-E H,-ES 0 H-ES ab H-E b bb
− + − = − + − = ( ) ( ) 0 ( ) ( ) 0 a b a b a b b b b b a a a a a a b a b b H ES c H ES c H ES c H ES c 关于ca、cb的线性齐次方程组, 得到非零解的条件:系数行列式为0。 = 0 − − − − ab ab bb bb aa aa ab ab H ES H ES H ES H ES 二阶久期行列式 = = = = 1 1 * * S d S d bb b b aa a a = 0 − − − − H ES H E H E H ES ab ab bb aa ab ab H2 +的久期方 程
同核双原子分子:Han=Hb (Han -e)-(hob-Esab)=0 H-E=±(HA-ES E(Sab-1)=Hab-H E(Sab-1)=-ob -H H+H H-H b El b 2 1+S b
同核双原子分子: Haa = Hbb ( ) ( ) 0 2 2 Ha a − E − Ha b − ESa b = ( ) Haa − E = Hab − ESab E Sab − = Hab − Haa ( 1) E −Sab − = −Hab − Haa ( 1) ab aa ab S H H E + + = 1 1 ab aa ab S H H E − − = 1 2