免费下载网址http://jiaoxue5u.ys168.com/ 1.4有理数的乘除 1.4.1有理数的乘法 教学目标 知识与技能:掌握有理数的乘法法则,会根据有理数乘法法则进行有理数乘法的运算 过程与方法:使学生在了解有理数乘法的意义的基础上,掌握有理数乘法法则,并初步掌握有 理数乘法法则的合理性 情感态度与价值观:培养学生观察、归纳、概括及运算能力 教学重难点 重点:有理数乘法的运算。 难点:有理数乘法中的符号法则。 教学准备:设置探究问题 教学方法:引导探究法 教学过程: 、复习引入 有理数加减运算中,关键问题是什么?和小学运算中最主要的不同点是什么?(符号问题) (负数问题,符号的确定) 、探究新知: 思考1:观察下面的乘法算式,你能发现什么规律吗? 3×3=93×2=63 3×0=0 上述算式有什么规律? 随着后一乘数逐次递减1,积逐次递减3. 要使这个规律在引入负数后仍成立,那么应有 3×(-1)=-3 3×(-2)=-6 思考2:观察下面的算式,你又能发现什么规律吗? 3×3=92×3=61×3=30×3=0 上述算式有什么规律 随着前一乘数逐次递减1,积逐次递减3. 要使这个规律在引入负数后仍成立,那么应有 (-1)×3=-3 (-2)×3=-6 (-3)× 从符号和绝对值两个角度观察,可归纳积的特点: 正数乘正数,积为正数;正数乘负数,积为负数 负数乘正数,积为负数;积的绝对值等于各乘数绝对值的积 思考3:利用上面归纳的结论计算下面的算式,你发现什么规律? (-3)×3=-9 (-3)×2=-6 (-3)×1=-3 (-3)×0=0 上述算式有什么规律 随着后一乘数逐次递减1,积逐次增加3. 利用上面归纳的结论计算下面的算式,你发现什么规律? (-3)×(-1)=3 (-3)×(-2)=6 解压密码联系qq119139686加微信公众号 Jlaoxuewuyou九折优惠!淘宝网址: jiaoxuesu.taobao.com
免费下载网址 http://jiaoxue5u.ys168.com/ 解压密码联系 qq 1119139686 加微信公众号 jiaoxuewuyou 九折优惠!淘宝网址: jiaoxue5u.taobao.com 1.4 有理数的乘除 1.4.1 有理数的乘法 教学目标: 知识与技能:掌握有理数的乘法法则,会根据有理数乘法法则进行有理数乘法的运算 过程与方法:使学生在了解有理数乘法的意义的基础上,掌握有理数乘法法则,并初步掌握有 理数乘法法则的合理性。 情感态度与价值观:培养学生观察、归纳、概括及运算能力。 教学重难点: 重点:有理数乘法的运算。 难点:有理数乘法中的符号法则。 教学准备:设置探究问题 教学方法:引导探究法 教学过程: 一、复习引入: 有理数加减运算中,关键问题是什么?和小学运算中最主要的不同点是什么?(符号问题) (负数问题,符号的确定) 二、探究新知: 思考 1:观察下面的乘法算式,你能发现什么规律吗? 3×3=9 3×2=6 3×1=3 3×0=0 上述算式有什么规律? 随着后一乘数逐次递减 1,积逐次递减 3. 要使这个规律在引入负数后仍成立,那么应有 3×(-1)=-3 3×(-2)=-6 3×(-3)=-9 思考 2:观察下面的算式,你又能发现什么规律吗? 3×3=9 2×3=6 1×3=3 0×3=0 上述算式有什么规律? 随着前一乘数逐次递减 1,积逐次递减 3. 要使这个规律在引入负数后仍成立,那么应有 (-1)×3=-3 (-2)×3=-6 (-3)×3=-9 从符号和绝对值两个角度观察,可归纳积的特点: 正数乘正数,积为正数;正数乘负数,积为负数; 负数乘正数,积为负数;积的绝对值等于各乘数绝对值的积. 思考 3:利用上面归纳的结论计算下面的算式,你发现什么规律? (-3)×3=-9 (-3)×2=-6 (-3)×1=-3 (-3)×0=0 上述算式有什么规律? 随着后一乘数逐次递减 1,积逐次增加 3. 利用上面归纳的结论计算下面的算式,你发现什么规律? (-3)×(-1)=3 (-3)×(-2)=6
免费下载网址http://jiaoxue5u.ys168.com/ (-3)×(-3)=9 归纳结论:负数乘负数,积为正数,乘积的绝对值等于各乘数绝对值的积 综合上面各种情况,引导学生自己归纳出有理数乘法的法则 两数相乘,同号得正,异号得负,并把绝对值相乘; 任何数同0相乘,都得0 例如:再如 (-5)×(-3)…同号两数相乘 (-6)×4……异号两数相乘 (-5)×(-3)=+()…………得正 (-6)×4=-() ……得负 5×3=15…把绝对值相乘 6×4=24…………把绝对值相乘 所以(-5)×(-3)=15。所以(-6)×4=-24 思考:通过上题,你认为:非零两数相乘,关键是什么? 有理数乘法的步骤: 两个有理数相乘,先确定积的 再确定积的 应用新知: 例1:计算:①②(-3)×9 8×(-1) ③④ 3-8 一个数同1相乘,结果是原数,一个数同一1相乘,得原数的相反数. 观察③④两式有什么特点? 乘积是1的两个数互为倒数 思考:数的利升么? 例2用正负数表示气温的变化量,上升为正,下降为负,登山队攀登一座山峰,每登高1km 气温的变化量为一6°C,攀登3km后,气温有什么变化? 3.课堂练习:课本:P30:1,2,3。 三、课堂小结: 通过这节课的学习你有哪些收获? 有理数乘法法则:有理数乘法的步骤 四、课堂作业: 课本:P3:1,2。 板书设计 14.1有理数的乘法(1) ②探究乘法法则:例1.①… 教学反思 4.1有理数的乘法(2) 教学目标 知识与技能:进一步理解与掌握有理数乘法运算。 过程与方法:能确定几个不是0的有理数乘积运算的符号,进行有理数运算 解压密码联系qq119139686加微信公众号 Jlaoxuewuyou九折优惠!淘宝网址: jiaoxuesu.taobao.com
免费下载网址 http://jiaoxue5u.ys168.com/ 解压密码联系 qq 1119139686 加微信公众号 jiaoxuewuyou 九折优惠!淘宝网址: jiaoxue5u.taobao.com 1.4.1 有理数的乘法(1) 探究乘法法则:例 1.①……………例 2.……………… ……………………………………………………… ……………………………………………………… …………………④…………………………………… (-3)×(-3)=9 归纳结论:负数乘负数,积为正数,乘积的绝对值等于各乘数绝对值的积. 综合上面各种情况,引导学生自己归纳出有理数乘法的法则: 两数相乘,同号得正,异号得负,并把绝对值相乘; 任何数同 0 相乘,都得 0 例如:再如: (-5)×(-3)···········同号两数相乘 (-6)×4··············异号两数相乘 (-5)×(-3)=+( )············得正 (-6)×4=-( )················得负 5×3=15·············把绝对值相乘 6×4=24··············把绝对值相乘 所以 (-5)×(-3)=15。所以 (-6)×4=-24。 思考:通过上题,你认为:非零两数相乘,关键是什么? 有理数乘法的步骤: 两个有理数相乘,先确定积的_____,再确定积的______. 三、应用新知: 例 1:计算:①② ③④ 一个数同 1 相乘,结果是原数,一个数同-1 相乘,得原数的相反数. 观察③④两式有什么特点? 乘积是 1 的两个数互为倒数. 思考:数的倒数是什么? 例 2 用正负数表示气温的变化量,上升为正,下降为负,登山队攀登一座山峰,每登高 1 km 气温的变化量为-6 ºC,攀登 3 km 后,气温有什么变化? 3.课堂练习:课本:P30:1,2,3。 三、课堂小结: 通过这节课的学习你有哪些收获? 有理数乘法法则;有理数乘法的步骤。 四、课堂作业: 课本:P37:1,2。 板书设计: ② ③ 教学反思: 1.4.1 有理数的乘法(2) 教学目标: 知识与技能:进一步理解与掌握有理数乘法运算。 过程与方法:能确定几个不是 0 的有理数乘积运算的符号,进行有理数运算。 8 ( 1) − 1 ( 2) 2 − − ( 3) 9 − 3 8 ( ) ( ). 8 3 − − a a( 0)
免费下载网址http://jiaoxue5u.ys168.com/ 情感态度与价值观:进一步提高同学们观察问题、分析问题、归纳问题的能力 教学重难点: 重点:乘法的符号法则 难点:积的符号的确定 教学准备:多媒体课件 教学方法:引导探究法 教学过程 复习引入: 叙述有理数乘法法则 探究新知: 思考:判断下列各式的积是正的还是负的? 2×3×4×(-5) 负因数有个积为 2×3×(-4)×(-5) 负因数有个积为 2×(-3)×(-4)×(-5) 负因数有个积为 (-2)×(-3)×(-4)×(-5) 负因数有个积为 学生计算,分组交流 议一议 几个不是0的数相乘,积的符号与负因数的个数之间有什么关系? 归纳: 几个不等于零的数相乘,积的符号由 决定 当负因数的个数是时,积是正数 当负因数的个数是时,积是负数 应用新知 例3计算 (1)(-3)× 含×()2-) (2)(-5)×6×(-) 并思考问题: 多个不是0的有理数相乘,先做哪一步,再做哪一步? 学生思考,得出结论。 先确定积的符号,再把各因数的绝对值相乘 计算 (3)(-2)×(-6)×4×(-0.5) ()(-3)×1×2×(-)×5×(—25)×(-) 问题: 你能看出下式的结果吗?如果能,请说明理由 7.8×(-8.1)×0×(-19.6) 几个数相乘,如果其中有因数为0, (-5)×(-8.1)×3.14×0=? 看谁反应快? -1×1×1×1×1= 1×(-1)×1×1×1= 解压密码联系qq119139686加微信公众号 Jlaoxuewuyou九折优惠!淘宝网址: jiaoxuesu.taobao.com
免费下载网址 http://jiaoxue5u.ys168.com/ 解压密码联系 qq 1119139686 加微信公众号 jiaoxuewuyou 九折优惠!淘宝网址: jiaoxue5u.taobao.com 情感态度与价值观:进一步提高同学们观察问题、分析问题、归纳问题的能力。 教学重难点: 重点:乘法的符号法则 难点:积的符号的确定 教学准备:多媒体课件 教学方法:引导探究法 教学过程: 一、复习引入: 叙述有理数乘法法则。 二、探究新知: 思考:判断下列各式的积是正的还是负的? 2×3×4×(-5) 负因数有___个积为 2×3×(-4)×(-5) 负因数有___个积为 2×(-3)×(-4)×(-5) 负因数有___个积为 (-2)×(-3)×(-4)×(-5) 负因数有___个积为 学生计算,分组交流 议一议: 几个不是 0 的数相乘,积的符号与负因数的个数之间有什么关系? 归纳: 几个不等于零的数相乘,积的符号由_____________决定. 当负因数的个数是_____时,积是正数; 当负因数的个数是_____时,积是负数. 三、应用新知: 例 3 计算 (1) (-3)× ×(-)×(-) (2) (-5)×6×(-)× 并思考问题: 多个不是 0 的有理数相乘,先做哪一步,再做哪一步? 学生思考,得出结论。 先确定积的符号,再把各因数的绝对值相乘。 计算 (3) (-2)×(-6)×4×(-0.5) (4) (-3)×1×2×(-4)×5×(-2.5)×(-) 问题: 你能看出下式的结果吗?如果能,请说明理由. 7.8×(-8.1)×0×(-19.6) 几个数相乘,如果其中有因数为 0, _________. (−5)(−8.1)3.140 = ? 看谁反应快? ―1×1×1×1×1=_____; ―1×(―1)×1×1×1=_____;
免费下载网址http:/jiaoxue5u.ys168.com/ 1×(-1)×(-1)×1×1= 1×(-1)×(-1)×(-1)×1 1×(-1)×(-1)×(-1)×(-1) 随堂练习:P32:1,2。 四、课堂小结 (1)几个不为0的有理数相乘,积的符号如何确定?若有一个因数为0呢? (2)几个不为0的有理数相乘,一般步骤怎样? (3)说说你还有那些疑惑和收获? 1.4.1有理数的乘法3) 教学目标 知识与技能:使学生掌握有理数乘法的运算律,并利用运算律简化乘法运算 过程与方法:进行有理数运算,使学生掌握一些运算方法,培养学生运算能力 情感态度与价值观:进一步提高同学们观察问题、分析问题、归纳问题的能力。 教学重难点: 重点:乘法的运算律和运算能力的提高。 难点:运算能力的提高。 教学准备:多媒体课件 教学方法:引导探究法 教学过程 温故知新: 有理数的乘法法则如何表述 2.进行有理数乘法运算的一般步骤是什么? 3.计算与思考 第一组: (2)3×4×0.25=3×(4×0.25) (3)2×(3+4)=2×3+2×4= 思考:上面每小组运算分别体现了什么运算律? 在小学里,我们曾经学过乘法的交换律、结合律,这两个运算律在有理数乘法运算中也是成立 的吗? 探究新知 第二组: (1)5×(-6)=(-6)×5 (2)[3×(-4)]×(—5)=3×[(-4)×(-5)]= (3)5×[3+(-7)]=5×3+5×(-7) 学生活动并总结乘法的交换律、结合律 乘法交换律:两个数相乘,交换因数的位置,积不变。即ab=ba 乘法结合律:三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积不变。即(b)c=a(bc) 乘法分配律:一个数同两个数的和相乘,等于把这个数分别同这两个数相乘,再把积相加 即a(b+c)=ab+ac 解压密码联系qq119139686加微信公众号 Jlaoxuewuyou九折优惠!淘宝网址: jiaoxuesu.taobao.com
免费下载网址 http://jiaoxue5u.ys168.com/ 解压密码联系 qq 1119139686 加微信公众号 jiaoxuewuyou 九折优惠!淘宝网址: jiaoxue5u.taobao.com ―1×(―1)×(―1)×1×1=_____; ―1×(―1)×(―1)×(―1)×1=____; ―1×(―1)×(―1)×(―1)×(―1) =____. 随堂练习:P32:1,2。 四、课堂小结 (1)几个不为 0 的有理数相乘,积的符号如何确定?若有一个因数为 0 呢? (2)几个不为 0 的有理数相乘,一般步骤怎样? (3)说说你还有那些疑惑和收获? 1.4.1 有理数的乘法(3) 教学目标: 知识与技能:使学生掌握有理数乘法的运算律,并利用运算律简化乘法运算。 过程与方法:进行有理数运算,使学生掌握一些运算方法,培养学生运算能力。 情感态度与价值观:进一步提高同学们观察问题、分析问题、归纳问题的能力。 教学重难点: 重点:乘法的运算律和运算能力的提高。 难点:运算能力的提高。 教学准备:多媒体课件 教学方法:引导探究法 教学过程: 一、 温故知新: 1.有理数的乘法法则如何表述? 2.进行有理数乘法运算的一般步骤是什么? 3.计算与思考 第一组: (1) 2×3=3×2= (2) 3×4×0.25=3×(4×0.25)= (3) 2×(3+4)=2×3+2×4= 思考:上面每小组运算分别体现了什么运算律? 在小学里,我们曾经学过乘法的交换律、结合律,这两个运算律在有理数乘法运算中也是成立 的吗? 二、探究新知: 第二组: (1) 5×(-6) =(-6 )×5= (2) [3×(-4)]×(- 5)=3×[(-4)×(-5)]= (3) 5×[3+(-7 )]= 5×3+5×(-7 ) = 学生活动并总结乘法的交换律、结合律。 乘法交换律:两个数相乘,交换因数的位置,积不变。即 a b = b a 乘法结合律:三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积不变。即(ab)c=a(bc) 乘法分配律:一个数同两个数的和相乘,等于把这个数分别同这两个数相乘,再把积相加. 即 a(b+c) = ab+ac
免费下载网址http://jiaoxue5u.ys168.com/ 根据乘法交换律和结合律可以推出 三个以上有理数相乘,可以任意交换乘数的位置,也可以先把其中的几个数相乘 注意:用字母表示乘数时,“×”号可以写成“·”或省略,如a×b可以写成a·b或ab. 数的范围已扩充到有理数) 三、实践应用: 例.用两种方法计算 (4+)12 根据分配律可以推出:一个数同几个数的和相乘,等于把这个数分别同这几个数相乘,再把积相 a(b+c+d=abtactad 计算 ①(-8)×(-12)×(0.12)×(-3)x(-01) 60 ③(-)×(8,13-0.16) ④(-11)×(-+(-11)×2÷+(-11)×(一 学生板演、互评,强调合理使用运算律 随堂练习: 课本:P3:练习。 四、课堂小结: 通过本节课的学习,你有哪些收获? 五、课堂作业: 课本:P3:7(1)(2)(3)(6) 板书设计: 14.1有理数的乘法(3) 探究:运算律和法则:例. 学生练习:………… 教学反思 4.2有理数的除法(1) 教学目标 知识与技能:学生理解有理数倒数的意义。使学生掌握有理数的除法法则,能够熟练地进行除 法运算 过程与方法:经历有理数除法法则的探究过程,掌握利用互逆运算将除法转变成乘法,进一步 解压密码联系qq119139686加微信公众号 Jlaoxuewuyou九折优惠!淘宝网址: jiaoxuesu.taobao.com
免费下载网址 http://jiaoxue5u.ys168.com/ 解压密码联系 qq 1119139686 加微信公众号 jiaoxuewuyou 九折优惠!淘宝网址: jiaoxue5u.taobao.com 1.4.1 有理数的乘法(3) 探究:运算律和法则:例.……………………………… …………………………………………………… 学生练习:………………………………………………… 根据乘法交换律和结合律可以推出: 三个以上有理数相乘,可以任意交换乘数的位置,也可以先把其中的几个数相乘. 注意:用字母表示乘数时,“×”号可以写成“·”或省略, 如 a×b 可以写成 a·b 或 ab. (数的范围已扩充到有理数). 三、实践应用: 例.用两种方法计算 ( +- )×12 根据分配律可以推出:一个数同几个数的和相乘,等于把这个数分别同这几个数相乘,再把积相 加。 a(b+c+d)=ab+ac+ad 计算: ① (-8)×(-12)×(-0.125)×(- )×(-0.1) ② 60×(1--- ) ③ (- )×(8-1 -0.16 ) ④ (-11)×(- )+(-11)×2 +(-11)×(- ) 学生板演、互评,强调合理使用运算律。 随堂练习: 课本:P33:练习。 四、课堂小结: 通过本节课的学习,你有哪些收获? 五、课堂作业: 课本:P38:7(1)(2)(3)(6) 板书设计: 教学反思: 1.4.2 有理数的除法(1) 教学目标: 知识与技能:学生理解有理数倒数的意义。使学生掌握有理数的除法法则,能够熟练地进行除 法运算。 过程与方法:经历有理数除法法则的探究过程,掌握利用互逆运算将除法转变成乘法,进一步