§93协整与误差修正模型 长期均衡关系与协整 二、协整检验 三、误差修正模型
§9.3 协整与误差修正模型 一、长期均衡关系与协整 二、协整检验 三、误差修正模型
长期均衡关系与协整
一、长期均衡关系与协整
0、问题的提出 经典回归模型( classical regression model)是建立在稳定 数据变量基础上的,对于非稳定变量,不能使用经典回归 模型,否则会出现虛假回归等诸多问题。 由于许多经济变量是非稳定的,这就给经典的回归分析方 法带来了很大限制。 但是,如果变量之间有着长期的稳定关系,即它们之间是 协整的( cointegration,则是可以使用经典回归模型方法 建立回归模型的。 例如,中国居民人均消费水平与人均GDP变量的例子中: 因果关系回归模型要比ARMA模型有更好的预测功能, 其原因在于,从经济理论上说,人均GDP决定着居民人均 消费水平,而且它们之间有着长期的稳定关系,即它们之 间是协整的( cointegration)
0、问题的提出 • 经典回归模型(classical regression model)是建立在稳定 数据变量基础上的,对于非稳定变量,不能使用经典回归 模型,否则会出现虚假回归等诸多问题。 • 由于许多经济变量是非稳定的,这就给经典的回归分析方 法带来了很大限制。 • 但是,如果变量之间有着长期的稳定关系,即它们之间是 协整的(cointegration),则是可以使用经典回归模型方法 建立回归模型的。 • 例如,中国居民人均消费水平与人均GDP变量的例子中: 因果关系回归模型要比ARMA模型有更好的预测功能, 其原因在于,从经济理论上说,人均GDP决定着居民人均 消费水平,而且它们之间有着长期的稳定关系,即它们之 间是协整的(cointegration)
1、长期均衡 经济理论指出,某些经济变量间确实存在着长期 均衡关系,这种均衡关系意味着经济系统不存在破坏 均衡的内在机制,如果变量在某时期受到干扰后偏离 其长期均衡点,则均衡机制将会在下一期进行调整以 使其重新回到均衡状态 假设X与Y间的长期“均衡关系”由式描述 ,=a0+a1X1+ 式中:μt是随机扰动项。 该均衡关系意味着:给定Ⅹ的一个值,Y相应的 均衡值也随之确定为α。+∞1X
经济理论指出,某些经济变量间确实存在着长期 均衡关系,这种均衡关系意味着经济系统不存在破坏 均衡的内在机制,如果变量在某时期受到干扰后偏离 其长期均衡点,则均衡机制将会在下一期进行调整以 使其重新回到均衡状态。 假设X与Y间的长期“均衡关系”由式描述 1、长期均衡 Yt =0 +1 Xt + t 式中:t是随机扰动项。 该均衡关系意味着:给定X的一个值,Y相应的 均衡值也随之确定为 0+1X
在t-期末,存在下述三种情形之一: (1)Y等于它的均衡值:Y11=∞+x1X1; (2)Y小于它的均衡值:Y10+a1X1; (3)Y大于它的均衡值:Y1>0+a1X1; 在时期t,假设X有一个变化量ΔX,如果变量Ⅹ与Y在 时期t与t-1末期仍满足它们间的长期均衡关系,则Y的相应 变化量由式给出 △Y=c,△X.+1 式中,v=-11
在t-1期末,存在下述三种情形之一: (1)Y等于它的均衡值:Yt-1 = 0+1Xt ; (2)Y小于它的均衡值:Yt-1< 0+1Xt ; (3)Y大于它的均衡值:Yt-1> 0+1Xt ; 在时期t,假设X有一个变化量Xt,如果变量X与Y在 时期t与t-1末期仍满足它们间的长期均衡关系,则Y的相应 变化量由式给出: t t t Y = X + v 1 式中,vt =t-t-1