方法(一) ∴ ABICD, ADIBO 四边形ABcD是平行四边形 (两组对边分别平行的四边形是平行四边形)
A D B C (两组对边分别平行的四边形是平行四边形) ∵AB∥CD,AD∥BC ∴四边形ABCD是平行四边形
方法(二 两组对边分别相等的四边形是平行四边形? 猜想,对吗?
A D B C 两组对边分别相等的四边形是平行四边形? 猜想,对吗?
D B 两组对边分别相等的四边形是平行四边形 这只是一个命题 符号语言: ABECDAD=BC ∴四边形ABcD是平行四边形 已知:在四边形ABCD中,AB=CD,AD=BC 求证:四边形ABCD是平行四边形
两组对边分别相等的四边形是平行四边形 这只是一个命题 ∵AB=CD,AD=BC ∴四边形ABCD是平行四边形 已知:在四边形ABCD中, , 求证:四边形ABCD是平行四边形 A B C D 符号语言: AB=CD,AD=BC
已知:四边形ABCD,AB=CD,AD=BC 求证:四边形ABCD是平行四边形 证明:连结Ac 在△ABC和△cDA中 AB=cD(已知) AD=cB(已知) 2 AC=cA(公共边) △ABc△cDA(SSS) ∠1=∠2,∠3=∠4(全等三角形的对应角相等) ABCD,ADBc(内错角相等,两直线平行) 四边形ABcD是平行四边形(两组对边分别平行的四边形 是平行四边形)
已知:四边形ABCD, AB=CD,AD=BC 求证:四边形ABCD是平行四边形 证明: 连结AC 在△ABC和△CDA中 ∴△ABC≌△CDA(SSS) ∴∠1=∠2,∠3=∠4(全等三角形的对应角相等) ∴ AB∥CD,AD∥BC (内错角相等,两直线平行) D B A C 2 1 3 4 AB=CD(已知) AD=CB (已知) AC=CA (公共边) ∴四边形ABCD是平行四边形(两组对边分别平行的四边形 是平行四边形)
平行四边形的判定定理1: 两组对边分别相等的四边形是平行四边形 符号语言: ∴AB=CDAD=BC 四边形ABcD是平行四边形 (两组对边分别相等的四边形是平行四边形)
两组对边分别相等的四边形是平行四边形 平行四边形的判定定理1: 符号语言: ∵AB=CD,AD=BC ∴四边形ABCD是平行四边形 (两组对边分别相等的四边形是平行四边形) A B C D