装 配 ◆MF是由G-actin单体形成的多聚体,肌动蛋白单体具有极性, 装配时呈头尾相接, 故微丝具有极性。 ◆体外实验表明,MF正极与负极都能生长,生长快的一端为正 极,慢的一端为负极;去装配时,负极比正极快。由于G-actin 在正极端装配,负极去装配,从而表现为踏车行为。 ◆体内装配时,MF呈现出动态不稳定性,主要取决于F-actin结 合的ATP水解速度与游离的G-actin单体浓度之间的关系。 ◆ MF动态变化与细胞生理功能变化相适应。在体内, 有些微丝是 永久性的结构, 有些微丝是暂时性的结构
装 配 ◆MF是由G-actin单体形成的多聚体,肌动蛋白单体具有极性, 装配时呈头尾相接, 故微丝具有极性。 ◆体外实验表明,MF正极与负极都能生长,生长快的一端为正 极,慢的一端为负极;去装配时,负极比正极快。由于G-actin 在正极端装配,负极去装配,从而表现为踏车行为。 ◆体内装配时,MF呈现出动态不稳定性,主要取决于F-actin结 合的ATP水解速度与游离的G-actin单体浓度之间的关系。 ◆ MF动态变化与细胞生理功能变化相适应。在体内, 有些微丝是 永久性的结构, 有些微丝是暂时性的结构
微丝特异性药物 ◆细胞松弛素(cytochalasins):可以切断微丝,并结合 在微丝正极阻抑肌动蛋白聚合,因而导致微丝解聚。 ◆鬼笔环肽(philloidin):与微丝侧面结合,防止MF解聚。 ◆影响微丝装配动态性的药物对细胞都有毒害,说明 微丝功能的发挥依赖于微丝与肌动蛋白单体库间的动 态平衡。这种动态平衡受actin单体浓度和微丝结合蛋 白的影响
微丝特异性药物 ◆细胞松弛素(cytochalasins):可以切断微丝,并结合 在微丝正极阻抑肌动蛋白聚合,因而导致微丝解聚。 ◆鬼笔环肽(philloidin):与微丝侧面结合,防止MF解聚。 ◆影响微丝装配动态性的药物对细胞都有毒害,说明 微丝功能的发挥依赖于微丝与肌动蛋白单体库间的动 态平衡。这种动态平衡受actin单体浓度和微丝结合蛋 白的影响
微丝结合蛋白 整个骨架系统结构和功能在很大程度上受到不同的细胞骨 架结合蛋白的调节。 ◆ actin单体结合蛋白 这些小分子蛋白与actin单体结合,阻止其添加到微丝末端,当 细胞需要单体时才释放,主要用于actin装配的调节,如proflin 等。 ◆微丝结合蛋白 ◆微丝结合蛋白将微丝组织成以下三种主要形式:
微丝结合蛋白 整个骨架系统结构和功能在很大程度上受到不同的细胞骨 架结合蛋白的调节。 ◆ actin单体结合蛋白 这些小分子蛋白与actin单体结合,阻止其添加到微丝末端,当 细胞需要单体时才释放,主要用于actin装配的调节,如proflin 等。 ◆微丝结合蛋白 ◆微丝结合蛋白将微丝组织成以下三种主要形式:
·Parallel bundle: MF同向平行排列,主要发 现于微绒毛与丝状伪足。 ·Contractile bundle: MF反向平行排列,主要 发现于应力纤维和有丝分裂收缩环。 ·Gel-like network: 细胞皮层(cell cortex)中微 丝排列形式,MF相互交错排列
·Parallel bundle: MF同向平行排列,主要发 现于微绒毛与丝状伪足。 ·Contractile bundle: MF反向平行排列,主要 发现于应力纤维和有丝分裂收缩环。 ·Gel-like network: 细胞皮层(cell cortex)中微 丝排列形式,MF相互交错排列
微丝功能 ◆维持细胞形态,赋予质膜机械强度 ◆细胞运动 ◆微绒毛(microvillus) ◆应力纤维(stress fiber) ◆参与胞质分裂 ◆肌肉收缩(muscle contraction)
微丝功能 ◆维持细胞形态,赋予质膜机械强度 ◆细胞运动 ◆微绒毛(microvillus) ◆应力纤维(stress fiber) ◆参与胞质分裂 ◆肌肉收缩(muscle contraction)