第二章液压传动基础知识(补充内容) 本章介绍有关液压传动的流体力学基础,重点为液体静压方程、连续性方程、伯努力 方程的应用,压力损失、小孔流量的计算。要求学生理解基本概念、牢记公式并会应用 第一节液体静力学 液压传动是以液体作为工作介质进行能量传递的,因此要研究液体处于相对平衡状态下 的力学规律及其实际应用。所谓相对平衡是指液体内部各质点间没有相对运动,至于液体本 身完全可以和容器一起如同刚体一样做各种运动。因此,液体在相对平衡状态下不呈现粘性, 不存在切应力,只有法向的压应力,即静压力。本节主要讨论液体的平衡规律和压强分布规 律以及液体对物体壁面的作用力。 液体静压力及其特性 作用在液体上的力有两种类型:一种是质量力,另一种是表面力 质量力作用在液体所有质点上,它的大小与质量成正比,属于这种力的有重力、惯性力 等。单位质量液体受到的质量力称为单位质量力,在数值上等于重力加速度。 表面力作用于所研究液体的表面上,如法向力、切向力。表面力可以是其他物体(例如 活塞、大气层)作用在液体上的力:也可以是一部分液体间作用在另一部分液体上的力。对 于液体整体来说,其他物体作用在液体上的力属于外力,而液体间作用力属于内力。由于理 想液体质点间的内聚力很小,液体不能抵抗拉力或切向力,即使是微小的拉力或切向力都会 使液体发生流动。因为静止液体不存在质点间的相对运动,也就不存在拉力或切向力,所以 静止液体只能承受压力。 所谓静压力是指静止液体单位面积上所受的法向力,用p表示。 液体内某质点处的法向力△F对其微小面积△A的极限称为压力p,即: =1im△F/△A (2-1) 若法向力均匀地作用在面积A上,则压力表示为 A 式中:A为液体有效作用面积:F为液体有效作用面积A上所受的法向力 静压力具有下述两个重要特征 (1)液体静压力垂直于作用面,其方向与该面的内法线方向一致。 (2)静止液体中,任何一点所受到的各方向的静压力都相等。 、液体静力学方程 图2-1静压力的分布规律
第二章 液压传动基础知识(补充内容) 本章介绍有关液压传动的流体力学基础,重点为液体静压方程、连续性方程、伯努力 方程的应用,压力损失、小孔流量的计算。要求学生理解基本概念、牢记公式并会应用。 第一节 液体静力学 液压传动是以液体作为工作介质进行能量传递的,因此要研究液体处于相对平衡状态下 的力学规律及其实际应用。所谓相对平衡是指液体内部各质点间没有相对运动,至于液体本 身完全可以和容器一起如同刚体一样做各种运动。因此,液体在相对平衡状态下不呈现粘性, 不存在切应力,只有法向的压应力,即静压力。本节主要讨论液体的平衡规律和压强分布规 律以及液体对物体壁面的作用力。 一、液体静压力及其特性 作用在液体上的力有两种类型:一种是质量力,另一种是表面力。 质量力作用在液体所有质点上,它的大小与质量成正比,属于这种力的有重力、惯性力 等。单位质量液体受到的质量力称为单位质量力,在数值上等于重力加速度。 表面力作用于所研究液体的表面上,如法向力、切向力。表面力可以是其他物体(例如 活塞、大气层)作用在液体上的力;也可以是一部分液体间作用在另一部分液体上的力。对 于液体整体来说,其他物体作用在液体上的力属于外力,而液体间作用力属于内力。由于理 想液体质点间的内聚力很小,液体不能抵抗拉力或切向力,即使是微小的拉力或切向力都会 使液体发生流动。因为静止液体不存在质点间的相对运动,也就不存在拉力或切向力,所以 静止液体只能承受压力。 所谓静压力是指静止液体单位面积上所受的法向力,用 p 表示。 液体内某质点处的法向力ΔF 对其微小面积 ΔA 的极限称为压力 p,即: p=limΔF/ΔA (2-1) ΔA→0 若法向力均匀地作用在面积 A 上,则压力表示为: p=F/A (2-2) 式中:A 为液体有效作用面积;F 为液体有效作用面积 A 上所受的法向力。 静压力具有下述两个重要特征: (1)液体静压力垂直于作用面,其方向与该面的内法线方向一致。 (2)静止液体中,任何一点所受到的各方向的静压力都相等。 二、液体静力学方程 图 2-1 静压力的分布规律
静止液体内部受力情况可用图2-1来说明。设容器中装满液体,在任意一点A处取一微小面 积dA,该点距液面深度为h,距坐标原点高度为Z,容器液平面距坐标原点为Z为了求得 任意一点A的压力,可取dA·h这个液柱为分离体〔见图(b)。根据静压力的特性,作用于 这个液柱上的力在各方向都呈平衡,现求各作用力在Z方向的平衡方程。微小液柱顶面上的 作用力为pdA(方向向下),液柱本身的重力G=yhdA(方向向下),液柱底面对液柱的作用 力为pdA(方向向上),则平衡方程为: dA=+ y hdA 故p=p+Yh (2-1 为了更清晰地说明静压力的分布规律,将(2-1)式按坐标Z变换一下,即以:h=ZZ 代入上式整理后得: p+yZ=p+yZ常量 (2-2) 上式是液体静力学基本方程的另一种形式。其中Z实质上表示A点的单位质量液体的位 能。设A点液体质点的质量为m,重力为mg,如果质点从A点下降到基准水平面,它的重力 所做的功为ngz。因此A处的液体质点具有位置势能mgz,单位质量液体的位能就是 mgz/mg=Z,Z又常称作位置水头。而p/pg表示A点单位质量液体的压力能,常称为压力 水头。由以上分析及式(2-1)可知,静止液体中任一点都有单位质量液体的位能和压力能 即具有两部分能量,而且各点的总能量之和为一常量。 分析式(2-1)可知 (1)静止液体中任一点的压力均由两部分组成,即液面上的表面压力po和液体自重而引 起的对该点的压力yh (2)静止液体内的压力随液体距液面的深度变化呈线性规律分布,且在同一深度上各点 的压力相等,压力相等的所有点组成的面为等压面,很显然,在重力作用下静止液体的等压 面为一个平面。 (3)可通过下述三种方式使液面产生压力p: ①通过固体壁面(如活塞)使液面产生压力 ②通过气体使液面产生压力 ③通过不同质的液体使液面产生压力 三、压力的表示方法及单位 液压系统中的压力就是指压强,液体压力通常有绝对压力、相对压力(表压力)、真空度 三种表示方法。因为在地球表面上,一切物体都受大气压力的作用,而且是自成平衡的 即大多数测压仪表在大气压下并不动作,这时它所表示的压力值为零,因此,它们测出的压 力是高于大气压力的那部分压力。也就是说,它是相对于大气压(即以大气压为基准零值时) 所测量到的一种压力,因此称它为相对压力或表压力。另一种是以绝对真空为基准零值时所 测得的压力,我们称它为绝对压力。当绝对压力低于大气压时,习惯上称为出现真空。因此, 某点的绝对压力比大气压小的那部分数值叫作该点的真空度。如某点的绝对压力为 4.052×10Pa(0.4大气压),则该点的真空度为0.6078×10Pa(0.6大气压)。绝对压力、相 对压力(表压力)和真空度的关系如图2-4所示 表压力(正) 大气压力 绝 对 压 力表压水负)即真空度 绝对压力 图2-2绝对压力与表压力的关系 图2-3真空 由图2-2可知,绝对压力总是正值,表压力则可正可负,负的表压力就是真空度,如真
静止液体内部受力情况可用图 2-1 来说明。设容器中装满液体,在任意一点 A 处取一微小面 积 dA,该点距液面深度为 h,距坐标原点高度为 Z,容器液平面距坐标原点为 Z0。为了求得 任意一点 A 的压力,可取 dA·h 这个液柱为分离体〔见图(b)〕。根据静压力的特性,作用于 这个液柱上的力在各方向都呈平衡,现求各作用力在Z方向的平衡方程。微小液柱顶面上的 作用力为 p0dA(方向向下),液柱本身的重力G=γhdA(方向向下),液柱底面对液柱的作用 力为 pdA(方向向上),则平衡方程为: pdA=p0dA+γhdA 故 p= p0 +γh (2-1) 为了更清晰地说明静压力的分布规律,将(2-1)式按坐标Z变换一下,即以:h=Z0-Z 代入上式整理后得: p+γZ= p0 +γZ0=常量 (2-2) 上式是液体静力学基本方程的另一种形式。其中 Z 实质上表示 A 点的单位质量液体的位 能。设 A 点液体质点的质量为 m,重力为 mg,如果质点从 A 点下降到基准水平面,它的重力 所做的功为 mgz。因此 A 处的液体质点具有位置势能 mgz,单位质量液体的位能就是 mgz/mg=Z,Z 又常称作位置水头。而 p/ρg 表示 A 点单位质量液体的压力能,常称为压力 水头。由以上分析及式(2-1)可知,静止液体中任一点都有单位质量液体的位能和压力能, 即具有两部分能量,而且各点的总能量之和为一常量。 分析式(2-1)可知: (1)静止液体中任一点的压力均由两部分组成,即液面上的表面压力 p0 和液体自重而引 起的对该点的压力 γh。 (2)静止液体内的压力随液体距液面的深度变化呈线性规律分布,且在同一深度上各点 的压力相等,压力相等的所有点组成的面为等压面,很显然,在重力作用下静止液体的等压 面为一个平面。 (3)可通过下述三种方式使液面产生压力 p0: ①通过固体壁面(如活塞)使液面产生压力; ②通过气体使液面产生压力; ③通过不同质的液体使液面产生压力。 三、压力的表示方法及单位 液压系统中的压力就是指压强,液体压力通常有绝对压力、相对压力(表压力)、真空度 三种表示方法。 因为在地球表面上,一切物体都受大气压力的作用,而且是自成平衡的, 即大多数测压仪表在大气压下并不动作,这时它所表示的压力值为零,因此,它们测出的压 力是高于大气压力的那部分压力。也就是说,它是相对于大气压(即以大气压为基准零值时) 所测量到的一种压力,因此称它为相对压力或表压力。另一种是以绝对真空为基准零值时所 测得的压力,我们称它为绝对压力。当绝对压力低于大气压时,习惯上称为出现真空。因此, 某点的绝对压力比大气压小的那部分数值叫作该点的真空度。如某点的绝对压力为 4.052×104 Pa(0.4 大气压),则该点的真空度为 0.6078×104 Pa(0.6 大气压)。绝对压力、相 对压力(表压力)和真空度的关系如图 2-4 所示。 图 2-2 绝对压力与表压力的关系 图 2-3 真空 由图 2-2 可知,绝对压力总是正值,表压力则可正可负,负的表压力就是真空度,如真
空度为4.052×10Pa(0.4大气压),其表压力为-4.052×10Pa(-0.4大气压)。我们把下端 开口,上端具有阀门的玻璃管插入密度为p的液体中,如图2-3所示。如果在上端抽出一 部分封入的空气,使管内压力低于大气压力,则在外界的大气压力pa的作用下,管内液 体将上升至h,这时管内液面压力为p,由流体静力学基本公式可知:pa=p0+pgh。显然 ρgh就是管内液面压力po不足大气压力的部分,因此它就是管内液面上的真空度。由此可 见,真空度的大小往往可以用液柱高度h=(pa-po)/pg来表示。在理论上,当p等于零时, 即管中呈绝对真空时,h达到最大值,设为( homax)r,在标准大气压下, ( homax)r=pan/pg=10.1325/(9.8066p)=1.033/ 水的密度p=103kg/cm3,汞的密度为13.6×103kg/cm3。 所以(hmax)r=1.033×103=1033cmH10=10.33mH20 或(hoax)r=1.03313.6×103=76cmHg=760mHg 即理论上在标准大气压下的最大真空度可达10.33米水柱或760毫米汞柱。根据上述归 纳如下 (1)绝对压力=大气压力+表压力 (2)表压力=绝对压力大气压力 (3)真空度=大气压力-绝对压力 压力单位为帕斯卡,简称帕,符号为Pa,1Pa=1N/m2。由于此单位很小,工程上使用不便 因此常采用它的倍单位兆帕,符号MPa。IMpa=10°Pa 四、帕斯卡原理 密封容器内的静止液体,当边界上的压力po发生变化时,例如增加△p,则容器内任意 点的压力将增加同一数值Δpo也就是说,在密封容器内施加于静止液体任一点的压力将 以等值传到液体各点。这就是帕斯卡原理或静压传递原理。 在液压传动系统中,通常是外力产生的压力要比液体自重(yh所产生的压力大得多。因此 可把式(2-16)中的Yh项略去,而认为静止液体内部各点的压力处处相等 HHHtHHH 图2-4静压传递原理应用实例 根据帕斯卡原理和静压力的特性,液压传动不仅可以进行力的传递,而且还能将力放大 和改变力的方向。图2-4所示是应用帕斯卡原理推导压力与负载关系的实例。图中垂直液压 缸(负载缸)的截面积为A,水平液压缸截面积为A,两个活塞上的外作用力分别为F1、F2 则缸内压力分别为p=F1/A1、p=F2/A2。由于两缸充满液体且互相连接,根据帕斯卡原理有 p1=p2。因此有 F= F2AvAz 上式表明,只要A1/A2足够大,用很小的力F1就可产生很大的力F2。液压千斤顶和水压机 就是按此原理制成的 如果垂直液压缸的活塞上没有负载,即F1=0,则当略去活塞重量及其他阻力时,不论怎样 推动水平液压缸的活塞也不能在液体中形成压力。这说明液压系统中的压力是由外界负载决 定的,这是液压传动的一个基本概念。 五、液压静压力对固体壁面的作用力 在液压传动中,略去液体自重产生的压力,液体中各点的静压力是均匀分布的,且垂直作用 于受压表面。因此,当承受压力的表面为平面时,液体对该平面的总作用力F为液体的压力 p与受压面积A的乘积,其方向与该平面相垂直。如压力油作用在直径为D的柱塞上,则有
空度为 4.052×104 Pa(0.4 大气压),其表压力为-4.052×104 Pa(-0.4 大气压)。我们把下端 开口,上端具有阀门的玻璃管插入密度为 ρ 的液体中,如图 2-3 所示。如果在上端抽出一 部分封入的空气,使管内压力低于大气压力,则在外界的大气压力 p a 的作用下,管内液 体将上升至 h0,这时管内液面压力为 p0,由流体静力学基本公式可知:pa=p0+ρgh0。显然, ρgh0 就是管内液面压力 p0 不足大气压力的部分,因此它就是管内液面上的真空度。由此可 见,真空度的大小往往可以用液柱高度 h0=(pa- p0)/ρg 来表示。在理论上,当 p0 等于零时, 即管中呈绝对真空时,h0 达到最大值,设为(h0max)r,在标准大气压下, (h0max)r=patm/ρg=10.1325/(9.8066ρ)=1.033/ρ 水的密度ρ=10-3 kg/cm3,汞的密度为 13.6×10-3 kg/cm3。 所以(h0max)r=1.033×10-3 =1033cmH2O=10.33mH2O 或(h0max)r=1.03313.6×10-3 =76cmHg=760mmHg 即理论上在标准大气压下的最大真空度可达 10.33 米水柱或 760 毫米汞柱。根据上述归 纳如下: (1)绝对压力=大气压力+表压力 (2)表压力=绝对压力-大气压力 (3)真空度=大气压力-绝对压力 压力单位为帕斯卡,简称帕,符号为 Pa,1Pa=1N/m2。由于此单位很小,工程上使用不便, 因此常采用它的倍单位兆帕,符号 MPa。1Mpa=105 Pa 四、帕斯卡原理 密封容器内的静止液体,当边界上的压力 p0 发生变化时,例如增加 Δp,则容器内任意 一点的压力将增加同一数值 Δp0 也就是说,在密封容器内施加于静止液体任一点的压力将 以等值传到液体各点。这就是帕斯卡原理或静压传递原理。 在液压传动系统中,通常是外力产生的压力要比液体自重(γh)所产生的压力大得多。因此 可把式(2-16)中的 γh 项略去,而认为静止液体内部各点的压力处处相等。 图 2-4 静压传递原理应用实例 根据帕斯卡原理和静压力的特性,液压传动不仅可以进行力的传递,而且还能将力放大 和改变力的方向。图 2-4 所示是应用帕斯卡原理推导压力与负载关系的实例。图中垂直液压 缸(负载缸)的截面积为 A1,水平液压缸截面积为 A2,两个活塞上的外作用力分别为 F1、F2, 则缸内压力分别为 p1= F1/A1、p2= F2/A2。由于两缸充满液体且互相连接,根据帕斯卡原理有 p1= p2。因此有: F1 = F2 A1/A2 (2-3) 上式表明,只要 A1/A2 足够大,用很小的力 F1 就可产生很大的力 F2。液压千斤顶和水压机 就是按此原理制成的。 如果垂直液压缸的活塞上没有负载,即 F1 =0,则当略去活塞重量及其他阻力时,不论怎样 推动水平液压缸的活塞也不能在液体中形成压力。这说明液压系统中的压力是由外界负载决 定的,这是液压传动的一个基本概念。 五、液压静压力对固体壁面的作用力 在液压传动中,略去液体自重产生的压力,液体中各点的静压力是均匀分布的,且垂直作用 于受压表面。因此,当承受压力的表面为平面时,液体对该平面的总作用力 F 为液体的压力 p 与受压面积 A 的乘积,其方向与该平面相垂直。如压力油作用在直径为 D 的柱塞上,则有
F=pA=p I D/4 当承受压力的表面为曲面时,由于压力总是垂直于承受压力的表面,所以作用在曲面上 各点的力不平行但相等。要计算曲面上的总作用力,必须明确要计算哪个方向上的力 图2-5所示为液压缸筒受力分析图。设缸筒半径为r,长度为1,求液压力作用在右壁 部x方向的力Fx。在缸筒上取一微小窄条,其面积为d=lds=lrd,压力油作用在这微小 面积上的力dF在x方向的投影为 图2-5液体对固体壁面的作用力 dFx=dFcos 8=pdAcos 8=plrcos e d 8 在液压缸筒右半壁上x方向的总作用力为: plrcos e d e=2lrp 式中,21r为曲面在x方向的投影面积 由此可得出结论,作用在曲面上的液压力在某一方向上的分力等于静压力与曲面在该方 向投影面积的乘积。这一结论对任意曲面都适用。 图2-5为球面和锥面所受液压力分析图。要计算出球面和锥面在垂直方向受力F,只要 先计算出曲面在垂直方向的投影面积A,然后再与压力p相乘,即: F=pA=pd /4 式中:d为承压部分曲面投影圆的直径 图2-5液压力作用在曲面上的力 第二节液体动力学 液压传动系统中,液压油总是在不断的流动中,因此要研究液体在外力作用下的运动 规律及作用在流体上的力及这些力和流体运动特性之间的关系。对液压流体力学我们只关心 和研究平均作用力和运动之间的关系。本节主要讨论三个基本方程式,即液流的连续性方程、 柏努力方程和动量方程。它们是刚体力学中的质量守恒、质量守恒及动量守恒原理在流体力 学中的具体应用。前两个方程描述了压力、流速与流量之间的关系,以及液体能量相互间的 变换关系,后者描述了流动液体与固体壁面之间作用里的情况。液体是有粘性的,并在流动 中表现出来,因此,在研究液体运动规律时,不但要考虑质量力和压力,还要考虑粘性摩擦
F=pA=pπD2 /4。 当承受压力的表面为曲面时,由于压力总是垂直于承受压力的表面,所以作用在曲面上 各点的力不平行但相等。要计算曲面上的总作用力,必须明确要计算哪个方向上的力。 图 2-5 所示为液压缸筒受力分析图。设缸筒半径为 r,长度为 l,求液压力作用在右壁 部 x 方向的力 Fx。在缸筒上取一微小窄条,其面积为 dA=lds=lrdθ,压力油作用在这微小 面积上的力 dF 在 x 方向的投影为: 图 2-5 液体对固体壁面的作用力 dFx=dFcosθ=pdAcosθ=plrcosθdθ 在液压缸筒右半壁上 x 方向的总作用力为: Fx= − 2 2 plrcosθdθ=2lrp (2-4) 式中,2lr 为曲面在 x 方向的投影面积。 由此可得出结论,作用在曲面上的液压力在某一方向上的分力等于静压力与曲面在该方 向投影面积的乘积。这一结论对任意曲面都适用。 图 2-5 为球面和锥面所受液压力分析图。要计算出球面和锥面在垂直方向受力 F,只要 先计算出曲面在垂直方向的投影面积 A,然后再与压力 p 相乘,即: F=pA=pπd2 /4 (2-5) 式中:d 为承压部分曲面投影圆的直径。 图 2-5 液压力作用在曲面上的力 第二节 液体动力学 在液压传动系统中,液压油总是在不断的流动中,因此要研究液体在外力作用下的运动 规律及作用在流体上的力及这些力和流体运动特性之间的关系。对液压流体力学我们只关心 和研究平均作用力和运动之间的关系。本节主要讨论三个基本方程式,即液流的连续性方程、 柏努力方程和动量方程。它们是刚体力学中的质量守恒、质量守恒及动量守恒原理在流体力 学中的具体应用。前两个方程描述了压力、流速与流量之间的关系,以及液体能量相互间的 变换关系,后者描述了流动液体与固体壁面之间作用里的情况。液体是有粘性的,并在流动 中表现出来,因此,在研究液体运动规律时,不但要考虑质量力和压力,还要考虑粘性摩擦
力的影响。此外,液体的流动状态还与温度、密度、压力等参数有关。为了分析,可以简化 条件,从理想液体着手,所谓理想液体是指没有粘性的液体,同时,一般都视为在等温的条 件下把粘度、密度视作常量来讨论液体的运动规律。然后在通过实验对产生的偏差加以补充 和修正,使之符合实际情况 基本概念 1)理想液体与定常流动液体具有粘性,并在流动时表现出来,因此研究流动液体时 就要考虑其粘性,而液体的粘性阻力是一个很复杂的问题,这就使我们对流动液体的研究变 得复杂。因此,我们引入理想液体的概念,理想液体就是指没有粘性、不可压缩的液体。首 先对理想液体进行研究,然后再通过实验验证的方法对所得的结论进行补充和修正。这样 不仅使问题简单化,而且得到的结论在实际应用中扔具有足够的精确性。我们把既具有粘性 又可压缩的液体称为实际液体 当液体流动时,可以将流动液体中空间任一点上质点的运动参数,例如压力p、流速 及密度g表示为空间坐标和时间的函数,例如: 压力p=p(x,y,z,t) 速度v=v(x,y,z,t) 密度P=P(x,y,z,t) 如果空间上的运动参数p、v及P在不同的时间内都有确定的值,即它们只随空间点坐 标的变化而变化,不随时间t变化,对液体的这种运动称为定常流动或恒定流动。但只要有 一个运动参数随时间而变化,则就是非定常流动或非恒定流动。 如果空间点上的运动参数p、υ及ρ在不同的时间内都有确定的值,即它们只随空间 点坐标的变化而变化,不随时间t变化,对液体的这种运动称为定常流动或恒定流动。定常 流动时, 0 0 =0 t t at 在流体的运动参数中,只要有一个运动参数随时间而变化,液体的运动就是非定常流动 或非恒定流动。 小≡≡≡ (a) (b 图2-6恒定出流与非恒定出流 (a)恒定出流(b)非恒定出流 在图2-6(a)中,我们对容器出流的流量给予补偿,使其液面高度不变,这样,容器中各 点的液体运动参数p、υ、ρ都不随时间而变,这就是定常流动。在图2-9(b)中,我们不对 容器的出流给予流量补偿,则容器中各点的液体运动参数将随时间而改变,例如随着时间的 消逝,液面高度逐渐减低,因此,这种流动为非定常流动。 2)迹线、流线、流束和通流截面 ①迹线:迹线是流场中液体质点在一段时间内运动的轨迹线 ②流线:流线是流场中液体质点在某一瞬间运动状态的一条空间曲线。在该线上各点的 液体质点的速度方向与曲线在该点的切线方向重合。在非定常流动时,因为各质点的速度可 能随时间改变,所以流线形状也随时间改变。在定常流动时,因流线形状不随时间而改变, 所以流线与迹线重合。由于液体中每一点只能有一个速度,所以流线之间不能相交也不能折 转
力的影响。此外,液体的流动状态还与温度、密度、压力等参数有关。为了分析,可以简化 条件,从理想液体着手,所谓理想液体是指没有粘性的液体,同时,一般都视为在等温的条 件下把粘度、密度视作常量来讨论液体的运动规律。然后在通过实验对产生的偏差加以补充 和修正,使之符合实际情况。 一、基本概念 1)理想液体与定常流动 液体具有粘性,并在流动时表现出来,因此研究流动液体时 就要考虑其粘性,而液体的粘性阻力是一个很复杂的问题,这就使我们对流动液体的研究变 得复杂。因此,我们引入理想液体的概念,理想液体就是指没有粘性、不可压缩的液体。首 先对理想液体进行研究,然后再通过实验验证的方法对所得的结论进行补充和修正。这样, 不仅使问题简单化,而且得到的结论在实际应用中扔具有足够的精确性。我们把既具有粘性 又可压缩的液体称为实际液体。 当液体流动时,可以将流动液体中空间任一点上质点的运动参数,例如压力 p、流速 v 及密度 g 表示为空间坐标和时间的函数,例如: 压力 p=p(x,y,z,t) 速度 v=v(x,y,z,t) 密度 = (x,y,z,t) 如果空间上的运动参数 p、v 及 在不同的时间内都有确定的值,即它们只随空间点坐 标的变化而变化,不随时间 t 变化,对液体的这种运动称为定常流动或恒定流动。但只要有 一个运动参数随时间而变化,则就是非定常流动或非恒定流动。 如果空间点上的运动参数 p、υ 及 ρ 在不同的时间内都有确定的值,即它们只随空间 点坐标的变化而变化,不随时间 t 变化,对液体的这种运动称为定常流动或恒定流动。定常 流动时, = 0, t p = 0 t v , = 0 t 在流体的运动参数中,只要有一个运动参数随时间而变化,液体的运动就是非定常流动 或非恒定流动。 图 2-6 恒定出流与非恒定出流 (a)恒定出流 (b)非恒定出流 在图 2-6(a)中,我们对容器出流的流量给予补偿,使其液面高度不变,这样,容器中各 点的液体运动参数 p、υ、ρ都不随时间而变,这就是定常流动。在图 2-9(b)中,我们不对 容器的出流给予流量补偿,则容器中各点的液体运动参数将随时间而改变,例如随着时间的 消逝,液面高度逐渐减低,因此,这种流动为非定常流动。 2)迹线、流线、流束和通流截面 ①迹线:迹线是流场中液体质点在一段时间内运动的轨迹线。 ②流线:流线是流场中液体质点在某一瞬间运动状态的一条空间曲线。在该线上各点的 液体质点的速度方向与曲线在该点的切线方向重合。在非定常流动时,因为各质点的速度可 能随时间改变,所以流线形状也随时间改变。在定常流动时,因流线形状不随时间而改变, 所以流线与迹线重合。由于液体中每一点只能有一个速度,所以流线之间不能相交也不能折 转