第四章矩阵力学基础 表象理论 复旦大学苏汝铿
第四章 矩阵力学基础 ——表象理论 复旦大学 苏汝铿
OBSERVER HIGHEST PRO6ABILITY REGION 超四四数乡 KA-BooM? Cannon balls:a quantum mechanical treatment
第四章矩阵力学基础 表象理论 >本章目的: 给出用各种方式平行描述体系状态、力学量 等方案一一表象 找出不同表象之间的相互关系和变换规则 一么正变换 建立一套用态矢量描述量子态的方案 一 Dirac算符 引入产生、湮灭算符重新讨论简谐振子
第四章 矩阵力学基础 ——表象理论 ➢本章目的: ▪ 给出用各种方式平行描述体系状态、力学量 等方案--表象 ▪ 找出不同表象之间的相互关系和变换规则- -么正变换 ▪ 建立一套用态矢量描述量子态的方案-- Dirac算符 ▪ 引入产生、湮灭算符重新讨论简谐振子
§4.1态和算符的表象表示 >表象:态和力学量的一种具体表述方式 >给定一个线性厄米算符→找出它的本征函数 系Un()}→Un(r)}具有正交、归一、完备、 封闭性,可以作为Hilbert空间的一组基底→ 表象 >态的表象
§4.1 态和算符的表象表示 ➢表象:态和力学量的一种具体表述方式 ➢给定一个线性厄米算符→找出它的本征函数 系{Un(r)}→ {Un(r)}具有正交、归一、完备、 封闭性,可以作为Hilbert空间的一组基底→ 表象 ➢态的表象
§4.1态和算符的表象表示 ·坐标表象: x6(x-x')=x6(x-x') (x)= (x)6(x量x')dx
§4.1 态和算符的表象表示 • 坐标表象: