Three. Physical equations For an isotropic body, the relations between deformation components and stress components are as follows E oruro Dr E= + X E = y E These are physical equations for spatial problems If stress components are denoted by strain components, physical equations can be written as: o =e+2GE T=G o,,=he+2G8,I=Gy o=e+ 2Ga I=G y where:e=8+8 +8 E +)-2山 11
11 Three. Physical Equations For an isotropic body, the relations between deformation components and stress components are as follows: ( ) ( ) ( ) z z x y y y z x x x y z E E E = − + = − + = − + 1 1 1 xy xy zx zx yz yz G G G 1 1 1 = = = These are physical equations for spatial problems. If stress components are denoted by strain components, physical equations can be written as: z z y y x x e G e G e G 2 2 2 = + = + = + xy xy zx zx yz yz G G G = = = where: x y z e = + + ( )( ) 1+ 1− 2 = E
空间题 三物理方程 对于各向同性体,形变分量与应力分量之间的关系如下: E 川o,+σ )I r 6,=Bl,从(+o,)=a :-以x+o,yxG2x 这就是空间问题的物理方程。 将应力分量用应变分量表示,物理方程又可表示为: o= ne+2G8 T=Gy o,=he+2GEyT=Gyx o=n e+ 2Ga =Gr 其中:。e=E,+En+E Eu 久= 1+)(1-2) 12
12 三 物理方程 对于各向同性体,形变分量与应力分量之间的关系如下: ( ) ( ) ( ) z z x y y y z x x x y z E E E = − + = − + = − + 1 1 1 xy xy zx zx yz yz G G G 1 1 1 = = = 这就是空间问题的物理方程。 将应力分量用应变分量表示,物理方程又可表示为: z z y y x x e G e G e G 2 2 2 = + = + = + xy xy zx zx yz yz G G G = = = 其中: x y z e = + + ( )( ) 1+ 1− 2 = E
Four Equations of compatibility Differentiate the second and the third formula of geometric equations at the left. Adding these two, we get ae, ac a 03w Substitute the fourth formula of geometric equations into the above equation, we get aE, a (a) ayaz Similarly ax (b) a y=0r dy Ox Oxy 13
13 Four Equations of Compatibility Differentiate the second and the third formula of geometric equations at the left.Adding these two,we get + = + = + y w z v z y y z w y z v z y y z 2 2 3 2 3 2 2 2 Substitute the fourth formula of geometric equations into the above equation, we get z y y z yz y z = + 2 2 2 2 (a) Similarly = + = + y x x y x z z x x y xy z x z x 2 2 2 2 2 2 2 2 2 2 (b)
空间题 四相容方程 将几何方程第二式左边对z的二阶导数与第三式左边对 y的二阶导数相加,得 a-8,ae a Ow a Ov aw 022*0y2 0v02 020y 2 Ovo= a2 将几何方程第四式代入,得 a8 dr (a) 02 同理06:,O26 azax (b) 8 千 axa 14
14 四 相容方程 将几何方程第二式左边对z的二阶导数与第三式左边对 y的二阶导数相加,得 + = + = + y w z v z y y z w y z v z y y z 2 2 3 2 3 2 2 2 将几何方程第四式代入,得 z y y z yz y z = + 2 2 2 2 (a) 同理 = + = + y x x y x z z x x y xy z x z x 2 2 2 2 2 2 2 2 2 2 (b)
Differentiate the late three formulas of geometric equations separately for X,Y, Z, we get 1 OyOx ozon yu 0zOy OxY oz Oxdz Oyo From the above equations, we get 0n)0(。02l + OxOx oy 0z Ox( Oyo (a/=2 2 0n)-,06 Oyo 15
15 Differentiate the late three formulas of geometric equations separately for X,Y,Z,we get y z u x z v z x y w z y u y z x v y x w x xy z x yz + = + = + = 2 2 2 2 2 2 From the above equations,we get x y z u y z y z u x x y z x x xy z x yz = = = + + − 2 2 2 2 2 2