Simple Dynamic Solutions forLinear Elastic Solidsmi@se.edl.cn
Simple Dynamic Solutions for Linear Elastic Solids
Outline· Surface under time-varying normal pressure(自由表面时变压力载荷)·Surfaceunderconstantnormal pressure(自由表面常压)·Surface under time-varying shear traction(自由表面时变剪应力载荷)·One-dimensional bar under end loading(端部受载杆件)·Planewavesininfinitesolids(无限固体中的平面波)·Wave speeds inisotropic solids(各向同性固体中的波速)·Reflection of longitudinal waves at a free surface (反射波) Reflection and transmission of waves at a bimaterialinterface(反射波与透射波)2
Outline • Surface under time-varying normal pressure(自由表面时 变压力载荷) • Surface under constant normal pressure(自由表面常压) • Surface under time-varying shear traction(自由表面时变 剪应力载荷) • One-dimensional bar under end loading(端部受载杆件) • Plane waves in infinite solids(无限固体中的平面波) • Wave speeds in isotropic solids(各向同性固体中的波速) • Reflection of longitudinal waves at a free surface(反射波) • Reflection and transmission of waves at a bimaterial interface(反射波与透射波) 2
Surface under Time-varying Normal Pressure. The solid is at rest and stressp(t)free at time t = O.Strain-displacement relation:=二i+uiienIsotropic Hooke's Law:1+vEVVO1EE(1+I1auagi: Linear momentum balance equations:OOt?Ox;? Symmetry condition indicates =g =O, z =z[x2,t]ou The only nontrivial strain component: ,Ox23
• The solid is at rest and stress free at time t = 0. • Strain-displacement relation: Surface under Time-varying Normal Pressure 3 , , 1 2 ij i j j i u u 2 2 ij j i u x t 1 ; . 1 1 2 ij ij kk ij ij ij kk ij E E E • Linear momentum balance equations: • Isotropic Hooke’s Law: • Symmetry condition indicates u u u u x t 1 3 2 2 2 0, , • The only nontrivial strain component: 2 2 2 u x
Surface under Time-varying Normal Pressure? Nontrivial stress components:E(1-v)EvauEOu.o,[x2,t]=0,[x2,1] -,/x,t2-+1-2v2](1+)(1+v)(1-2v) ax2 (1+v)(1-2v) ax2 : The only nonzero linear momentum balance equation:a"uE(1-v)u'uz - 0002at?at?0x2(1+v)(1-2v) x2?u2E(1-v)a"uz1ax?at?p(1+v)(1-2v): The 1-D wave equation has the general solution:u2 [x2,t] = f [t - x2 /c, ]+g[t + x2 /c,]. Initial conditions:[u,[x2,0] = 0[f[-x2 /c, ]+g[x2 /cL]= 0>f[-x2 /c]=-g[x2 /c,]= AOu2 [x2, 0]['"[-x2 /c,]+g'[x2 /c,] = 00at4
• Nontrivial stress components: Surface under Time-varying Normal Pressure 4 2 2 2 2 2 2 1 2 3 2 2 2 1 , , , , . 1 1 2 1 1 2 1 1 2 E E E u u x t x t x t x x 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 2 1 1 , 1 1 2 L L u u u E x t x t u u E c x c t • The only nonzero linear momentum balance equation: • The 1-D wave equation has the general solution: u x t f t x c g t x c 2 2 2 2 , L L • Initial conditions: 2 2 2 2 2 2 2 2 2 2 ,0 0 0 , 0 0 0 L L L L L L u x f x c g x c u x f x c g x c t f x c g x c A
Surface under Time-varying Normal Pressure: The vertical displacement:g[x2 /c,]=-A =g[t+x2/c,]=-Au2 [x2,t]= f [t -x2 /c, ]+g[t +x2 /c, ] = f [t - x2 /c, ] - AE(1-v) _uz =__E(1-v)→0 [3, ]= (1+(-2) a -- (1+(-21)f'[t-x2 /c.] Boundary conditions at the plane surface:E(1-v)[(1+(-2)[]=-[] = [[]=(+(-2)1,[0,1] =-p[] =--p[1]E(1-v)= T[]=% (1+v)(1-2)T [] t+ = [-x / ]-(+ []dt+ EE(1-v)(1-v)· Determine B: t=0 = A= f[-x2 /c-]= B? Final solutions:[,-~(+2 []dt, ,[ --p[1- /]t-x2/c≥0E(1-v)5
• The vertical displacement: Surface under Time-varying Normal Pressure 5 2 2 2 2 2 2 2 2 2 2 2 2 1 1 , 1 1 2 , 1 1 1 2 L L L L L L L u x t f t x g x c A g t x c A f t x c g t x c E E x t u f t x c x c A c • Boundary conditions at the plane surface: 2 2 2 0 0 1 1 1 1 2 0, 1 1 2 1 1 1 2 1 1 2 1 1 L L L t t x c L L L E c t p t f t p t f t p t c E c c f t p d B f t x c p d B E E • Determine B: t A f x c B 0 2 L • Final solutions: 2 2 2 2 0 2 2 2 1 1 2 , , , , 1 0 L t L x L L c c u x t p d x t p t x c t x c E