Works on cone-Beam Ct a Kirillov AA(1961)Completeness condition a Tuy H.K.(1983)--Completeness condition Feldkamp L A (1984)---Practical, Incomplete projection Smith B D (1985)--Completeness condition a Grangeat P (1987)Reconstruction Algorithm a Ge Wang. (1991)Reconstruction Algorithm Defrise M Clark R(1994)--Reconstruction Algorithm Kudo h Saito T(1991, 1994)Reconstruction Algorithm
Works on Cone-Beam CT ◼ Kirillov A.A. (1961)—Completeness condition ◼ Tuy H.K. (1983)-- Completeness condition ◼ Feldkamp L.A.(1984)---Practical,Incomplete projection ◼ Smith B.D.(1985)-- Completeness condition ◼ Grangeat P.(1987)—Reconstruction Algorithm ◼ Ge Wang .(1991)—Reconstruction Algorithm ◼ Defrise M.Clark R.(1994)-- Reconstruction Algorithm ◼ Kudo H. Saito T.(1991,1994)– Reconstruction Algorithm
CT重建算法 ■近似重建算法 ■迭代重建算法 ■精确重建算法
CT重建算法 ◼ 近似重建算法 ◼ 迭代重建算法 ◼ 精确重建算法
Tam- Danielsson Geometry Detector surface is limited to a cylindrical section between two consecutive helical turns Every point is on one and only one PI-line Pi-Li Tam: Three-dimensional computerized tomography scanning method and system for large objects with smaller area detector. US Patent 5, 390, 112, 1995
Tam-Danielsson Geometry Tam: Three-dimensional computerized tomography scanning method and system for large objects with smaller area detector. US Patent 5,390,112, 1995 Detector surface is limited to a cylindrical section between two consecutive helical turns Every point is on one and only one PI-line Pi-Line
Perfect mosaic Tam, Samarasekera, Sauer: Exact cone-beam CT with a spiral scan, Phys. Med. BioL. 43: 847-855, 1998 Kudo, Noo, Defrise: Cone-beam filtered-backprojection algorithm for truncated helical data 8 (From G. Wang)
Perfect Mosaic Tam, Samarasekera, Sauer: Exact cone-beam CT with a spiral scan, Phys. Med. Biol. 43:847-855, 1998 Kudo, Noo, Defrise: Cone-beam filtered-backprojection algorithm for truncated helical data, Phys. Med. Biol. 43:2885-2909, 1998 (From G. Wang)
Katsevich Theorem(2002) u(5,x) Object f(r) p(So,r) Source Pi-Line Detector f(x) Plate -D, q,o(,x,r)lass.dyds 2T)ld aq sn y e(s, x)=B(s,x)xu(s, x) O(S, x,r)=coS YB(s, x)+sin re(s, x) rom G. Wang
Katsevich Theorem (2002) D y q s x d ds x y s q f x f q s I x PI sin 1 ( ( ), ( , , )) | | ( ) | 1 2 1 ( ) 2 ( ) 0 = − = − e(s, x) (s, x)u(s, x) (s, x, ) cos(s, x) + sin e(s, x) ( ) 0 y s e u(s, x) ( , ) 0 s x ( ) 1 y s ( ) 2 y s f (x) Detector Plate Source Object Pi-Line (From G. Wang)