Chapter 5 The discrete-Time Fourier transform CHAPTER 5 THE DISCRETE-TIME FOURIER TRANSFORM
1 CHAPTER 5 THE DISCRETE-TIME FOURIER TRANSFORM Chapter 5 The Discrete-Time Fourier Transform
Chapter 5 The discrete-Time Fourier transform Consider a discrete-time lti system: Eigenfunction 特征函数 H H(x)=∑kn— Eigenvalue(特征值) xn]=xn+n@%=2r/N x∑a”=∑% k=<N> 2兀 j y=∑ S keko).iko,n ∑ ahle k
2 Chapter 5 The Discrete-Time Fourier Transform hn yn n z n z ( ) n H z z Eigenfunction 特征函数 ( ) ——Eigenvalue (特征值) n n H z h n z − + =− = Consider a discrete-time LTI system: xn= xn+ N 0 = 2 / N n N jk k k N jk n k k N x n a e a e 2 0 = = = = ( ) N jk N jk k k N jk jk n k k N y n a H e e a H e e 2 2 0 0 = = = =
Chapter 5 The discrete-Time Fourier transform N N2 N 0 Discrete-time Fourier transform pair x{] tejo lejon do Synthesis equation 2丌J2丌 eo)=∑xlp Xle Analysis equation n=-
3 Chapter 5 The Discrete-Time Fourier Transform Discrete-time Fourier transform pair ( ) x n X e e d j j n = 2 2 1 ( ) j n n j X e x n e − + =− = Synthesis equation Analysis equation
Chapter 5 The discrete-Time Fourier transform onvergence ssues Associated with the Discrete-Time Fourier Transform 1. xn is absolutely summable, ∑x[|<∞ 2. xin] has finite energy. <OO n=-0 Discrete-time r(eio)=x(eio H(eio) Fourier Analysis F-Y 4
4 Chapter 5 The Discrete-Time Fourier Transform Convergence Issues Associated with the Discrete-Time Fourier Transform n x n + =− 1. is absolutely summable, xn 2. has finite energy, xn + =− 2 x n n ( ) ( ) ( ) j j j Y e = X e H e ( ) 1 F - j y n Y e = Discrete-time Fourier Analysis
Chapter 10 The z-transform CHAPTER 10 THE Z-TRANSFORM
5 Chapter 10 The Z-Transform CHAPTER 10 THE Z-TRANSFORM