美国麻省理工大学:《Aerospace Dynamics(航空动力学)》英文版 lecture 11
文件格式: PDF大小: 1.58MB页数: 21
Spring 2003 Generalized forces revisited Derived Lagrange s equation from d'Alembert's equation ∑m(8x+16y+22)=∑(Fx+F+F。=) Define virtual displacements sx Substitute in and noting the independence of the 8q,, for each
文件格式: PDF大小: 182.19KB页数: 8
Spring 2003 Derivation of lagrangian equations Basic Concept: Virtual Work Consider system of N particles located at(, x2, x,,.x3N )with 3 forces per particle(f. f, f..fn). each in the positive direction
文件格式: PDF大小: 720.26KB页数: 33
Spring 2003 Example Given: Catapult rotating at a constant rate(frictionless, in the horizontal plane) Find the eom of the particle as it leaves the tube
文件格式: PDF大小: 165.55KB页数: 6
NUMERICAL SOLUTION GIEN A COMPLEX SET of OYNAMICS (t)=F(x) WHERE F() COULD BE A NONLINEAR FUNCTION IT CAN BE IMPOSS IBLE To ACTVALLY SOLVE FoR ( ExACTLY. OEVELOP A NUMERICAL SOLUTION. CANNED CoDES HELP US THIS TN MATLAB BUT LET US CONSDER THE BASiCS
文件格式: PDF大小: 1.42MB页数: 10
Introduction We started with one frame (B) rotating and accelerating with respect to another(), and obtained the following expression for the absolute acceleration
文件格式: PDF大小: 48.42KB页数: 6
Spring 2003 Lagrange's equations Joseph-Louis lagrange 1736-1813 http://www-groups.dcs.st-and.ac.uk/-history/mathematicians/lagranGe.html Born in Italy. later lived in berlin and paris Originally studied to be a lawyer Interest in math from reading halleys 1693 work on
文件格式: PDF大小: 238.3KB页数: 16
CoRIoLIS ACcELERAT0 EMYSTIF∈p CONSIOER CASE oF CONSTANT ROTA ToN.No AT0 N OF MME⊙AGUA,ANDc°srAT RADIAL VELOCITY ( As sEEN IN THE RomTIwG
文件格式: PDF大小: 2.37MB页数: 21
FURTHER BASICS 5-1 · LINEAR MOMENTUM m NEWTON'S LAW ∴F=P ow TAKE THE MOMENT OF MDMENTUM ANGULAR MOMENTUM MUST EXPLICITLY OEFINE
文件格式: PDF大小: 961.48KB页数: 13
NEWTONs L丹WS ① BoDY CoNTINUES玉 N TTS STATE OF MOT(0N DR REST UNLESS FORCED DI RECTIoNs IMPoRTA. 儿L M5T3 E AN NIERT升L ACELERATION
文件格式: PDF大小: 1.34MB页数: 15
©2025 mall.hezhiquan.com 和泉文库
帮助反馈侵权