Inertial reference frames In the previous lecture, we derived an expression that related the accelerations observed using two reference frames, A and B, which are in relative motion with respect to each other. aA =aB+(aA/ B)'y'' 22 x (DA/ B) 'y'2'+ TA/B+ X TA/B). (1) Here, aA is the acceleration of particle A observed by one observer, and
文件格式: PDF大小: 93.25KB页数: 7
Non-Inertial Reference Frame Gravitational attraction The Law of Universal Attraction was already introduced in lecture D1. The law postulates that the force of attraction between any two particles, of masses M and m, respectively, has a magnitude, F, given by F= (1) where r is the distance between the two particles, and G is the universal constant of gravitation. The value of G is empirically determined to be
文件格式: PDF大小: 143.21KB页数: 9
In the previous lecture, we related the motion experienced by two observers in relative translational motion with respect to each other. In this lecture we will extend this relation to our third type of observer.That is, observers who accelerate and rotate with respect to each other. As a matter of illustration, let us consider a very simple situation, in which a particle at rest with respect
文件格式: PDF大小: 158.83KB页数: 12
In the previous lectures we have described particle motion as it would be seen by an observer standing still at a fixed origin. This type of motion is called absolute motion. In many situations of practical interest, we find ourselves forced to describe the motion of bodies while we are simultaneously moving with respect to a more basic reference. There are many examples were such situations occur. The absolute motion of a passenger inside an aircraft is best
文件格式: PDF大小: 86.82KB页数: 6
So far we have used Newton's second law= ma to establish the instantaneous relation between the sum of the forces acting on a particle and the acceleration of that particle. Once the acceleration is known,the velocity (or position) is obtained by integrating the expression of the acceleration (or velocity). There are two situations in which the cumulative effects of unbalanced forces acting on a particle are of interest to us. These involve:
文件格式: PDF大小: 80.81KB页数: 5
In addition to the equations of linear impulse and momentum considered in the previous lecture, there is a parallel set of equations that relate the angular impulse and momentum. Angular Momentum We consider a particle of mass, m, with velocity v, moving under the influence of a force F. The angular momentum about point O is defined as the \moment\ of the particle's linear
文件格式: PDF大小: 103.33KB页数: 8
In this lecture we will consider the equations that result from integrating Newtons second law, F=ma, in time. This will lead to the principle of linear impulse and momentum. This principle is very useful when solving problems in which we are interested in determining the global effect of a force acting on a particle over a time interval Linear momentum We consider the curvilinear motion of a particle of mass, m, under the influence of a force F. Assuming that
文件格式: PDF大小: 80.64KB页数: 5
We have seen that the work done by a force F on a particle is given by dw =. dr. If the work done by F, when the particle moves from any position TI to any position T2, can be expressed as, W12=fdr=-(V(r2)-V(1)=V-v2, (1) then we say that the force is conservative. In the above expression, the scalar
文件格式: PDF大小: 82.46KB页数: 5
In this lecture we will look at some applications of Newton's second law, expressed in the different coordinate systems that were introduced in lectures D3-D5. Recall that Newton's second law F=ma, (1) is a vector equation which is valid for inertial observers. In general, we will be interested in determining the motion of a particle given
文件格式: PDF大小: 85.64KB页数: 5
In lecture D2 we introduced the position velocity and acceleration vectors and referred them to a fixed cartesian coordinate system. While it is clear that the choice of coordinate system does not affect the final answer, we shall see that, in practical problems, the choice of a specific system may simplify the calculations considerably. In previous lectures, all the vectors at all points in the trajectory were expressed in the
文件格式: PDF大小: 107.72KB页数: 8
©2025 mall.hezhiquan.com 和泉文库
帮助反馈侵权