五、计算水平地震作用的振型分解反应谱法 作用于i质点上的力有 m 惯性力 m2(x,+x。) mi o 弹性恢复力S1=k1x1+k2x2+…knxn m2② 阻尼力R=c1+c12x2+…cnn mI o 运动方程mx+∑c+ m, -m,(i,+io) S,(t R() m)+[13)+kx=mF()
五、计算水平地震作用的振型分解反应谱法 i =1,2, N 作用于i质点上的力有 m1 m2 mi mN xi xg(t) mi ( ) i i g − m x + x S (t) i R (t) i 惯性力 I i = mi ( x i + x g) 弹性恢复力 i i i in n S = k x + k x +k x 1 1 2 2 阻尼力 i i i in n R = c x + c x +c x 1 1 2 2 运动方程 i i g n j i j n j i i i j i m x +c x +k x = −m x =1 =1 mx cx kx mIx (t) g + + = −
m]3+[413+区kx2=-mF() 设{x(t)}=∑{X}D() 代入运动方程,得 m∑{X}D()+∑{D()+]∑{XD()=[m(2() 方程两端左乘{Xy XH[mk∑{X)B()+{Xye∑{X,D()+ +{XH[k]∑{XD()=-{XHm(2() LrYImlX,D(t+[) D(t+(kkR, D,(t) Xy[m]{2(
设 = = N i i i x t X D t 1 ( ) ( ) ( ( )) ( ) ( ( )) ( ) 1 1 1 m X D t c X D t k X D t m I x t g N i i i N i i i N i i i + + = − = = = ( ( )) ( ) ( ( )) ( ( )) 1 1 1 X k X D t X m I x t X m X D t X c X D t g T j N i i i T j N i i i T j N i i i T j + = − + + = = = ( ) ( ) ( ) ( ) X m I x t X m X D t X c X D t X k X D t g T j j j T j j j T j j j T j = − + + = 代入运动方程,得 方程两端左乘 T X j mx cx kx mIx (t) g + + = −
LrrImkX,D(+XckX D, (t)+rKkY,D, (t) rmr(t) MD()+CD,+KD,(t=xml,(t) M={XHm{x-j振型广义质量 K={Xy[kX-振型广义刚度 ={X[c{x}--振型广义阻尼系数 D,()+D D,(t) {X[M] M M M Ki=OM C=250, M D,(t)+25O,D1+o2D,(t)= MLM (XrMKr (z
( ) ( ) ( ) * * * M D t C D K D t X m I x t g T j j j j j j j + + = − * 2 * Kj = j M j * * Cj = 2 j j M j ( ) 2 ( ) ( ) 2 x t X M X X M I D t D D t g j T j T j j j j j j j − + + = ( ) ( ) ( ) ( ) X m I x t X m X D t X c X D t X k X D t g T j j j T j j j T j j j T j = − + + = j T M j = X j m X * ---j振型广义质量 ---j振型广义阻尼系数 j T Kj = X j k X * j T Cj = X j c X * ---j振型广义刚度 ( ) ( ) ( ) * * * * * x t M X M I D t M K D M C D t g j T j j j j j j j j − + + =
D,(t)+25,0,D1+2D,(t) XLMR LrIMKr s(o) KrYM ∑mxn YjX)L MRY j振型的振型参与系数 D()+25D+o2D()=-yx2(t) x(t)}=∑(HD() ()=∑xD()
( ) 2 ( ) ( ) 2 x t X M X X M I D t D D t g j T j T j j j j j j j − + + = = = = = n i i j i n i i j i j T j T j j m x m x X M X X M I 1 2 1 ---j振型的振型参与系数 ( ) 2 ( ) ( ) 2 D t D D t x t j j j j j j j g + + = − = = N i i i x t X D t 1 ( ) ( ) = = N j i ji j x t x D t 1 ( ) ( )
D()+25)D+c2D()=-y2() mx(o 对于单自由度体系 x+22+O2x=-x,(t) fig()e)sin oa(t-T)d 对于振型折算体系(右图) Ve so,(t SIn o ) (t-t)dt D(1)=3 x2()e SIn a (t-r)dr x2() y,△,(t) j=1,2,…N
( ) 2 ( ) ( ) 2 D t D D t x t j j j j j j j g + + = − x(t) x (t) g m 2 ( ) 2 x x x x t g + + = − = − − − − t t x t x e t 0 d ( ) g d ( ) sin ( )d 1 ( ) = − − − − t j t j D t x e t j j 0 j ( ) g j ( ) ( ) sin ( )d (t) = j j = − − − − t t j t x e t j j 0 j ( ) g j ( ) sin ( )d 1 ( ) (t) j x (t) g * M j j j 对于单自由度体系 对于j振型折算体系(右图) j =1,2, N