83.1 Discrete-Time Fourier Transform · The dTFtX(eio) of a sequence x叫lisa continuous function of o It is also a periodic function of a with a period 2T X(e (0o+2k -j(Oo+2 tk)n =∑ xinle yoon2mhn=∑xmle-10n=Y(eo
§3.1 Discrete-Time Fourier Transform • The DTFT X(ej) of a sequence x[n] is a continuous function of • It is also a periodic function of with a period 2: = =− + − + n j o k j o k n X e x n e ( 2 ) ( 2 ) ( ) [ ] j kn n j n x n e e o − =− − = 2 [ ] [ ] ( ) o o j n j n x n e X e =− − = =
83.1 Discrete-Time Fourier Transform · Therefore X(e0)=∑ xInle@ 1=-00 represents the Fourier series representation of the periodic function As a result, the Fourier coefficients xn can be computed from X(eJo) using the Fourier integral xn]=∫X(e)e Jon 2丌
§3.1 Discrete-Time Fourier Transform • Therefore = =− − n j j n X (e ) x[n]e = − x n X e e d j j n ( ) 2 1 [ ] As a result, the Fourier coefficients x[n] can be computed from X(ej) using the Fourier integral represents the Fourier series representation of the periodic function
83.1 Discrete-Time Fourier Transform Inverse discrete-time fourier transform xn]=∫X(e)eoao 2几一 Proof: XIn ∑x[(]k le Joe.jon 2兀
§3.1 Discrete-Time Fourier Transform • Inverse discrete-time Fourier transform: = − x n X e e d j j n ( ) 2 1 [ ] = − =− − x n x e e d j j n [] 2 1 [ ] Proof:
83.1 Discrete-Time Fourier Transform 2. The order of integration and summation can be interchanged if the summation inside the brackets converges uniformly, i.e. X(ej@o) exists ·Then ∫∑xle-o|eoo 2 ∑xq5inz(n=O 丌(n
§3.1 Discrete-Time Fourier Transform • The order of integration and summation can be interchanged if the summation inside the brackets converges uniformly, i.e. X(ej) exists • Then − =− − x e e d j j n [] 2 1 ( ) sin ( ) [ ] 2 1 [ ] ( ) − − = = − =− − =− n n x e d x j n
83.1 Discrete-Time Fourier Transform OW SIn gt(n 丌(n-()0,n≠C S|n-0 Hence sing(n ∑x(] l) ∑x(]δ[n-]=x[r π(n-C)c
§3.1 Discrete-Time Fourier Transform • Now [ ] [ ] [ ] ( ) sin ( ) [ ] x n x n n n x = d − = − − =− =− = d[n − ] = = − − n n n n 0, 1, ( ) sin ( ) Hence