Et3. Define flexural rigidity of plate by 12(l-y)ThenOSimilarlya=-Daxav11
• Define flexural rigidity of plate by • Then • Similarly 2 3 12 1 v Et 2 2 2 2 y w v x w M x D 2 2 2 2 My D x w v y w 11
aTwistingcurvatureisdefinedasaxoyand gives rise to an in-plane shear xyon a fibre distant za?wfrom the neutral surface of - 2zaxoy·Shear Stress2M-2Gaxy12
• Twisting curvature is defined as and gives rise to an in-plane shear on a fibre distant z from the neutral surface of . • Shear Stress x y w 2 x y w z 2 2 xy G xy x y w Gz 2 2 xy 12
: Twisting moment in face x = O or a isz dz dy7Mxv dyxy12Gt3a?w6axdyEt3 a?w2(1 +v) 6 axoya"w= -D(1-OxoySimilarly,, M dx=Jt zdzdxSinceT, =tr,M..=MXyxX13
• Twisting moment in face x = 0 or a is Mxy dy • Similarly, • Since z dz dy 2 2 xy t t x y Gt w 3 2 6 x y t w v E 3 2 2 1 6 x y w D v 2 1 xy yx Mxy M yx , M dx z dz dx yx yx 13
In-PlaneStressResultantsaNyt/272 0x dzOt. If , and , are the X- and y-direction in plane strains,then via Hooke's LawEt14
In-Plane Stress Resultants • If and are the x- and y-direction in plane strains, then via Hooke’s Law x y N dz x t x t / 2 / 2 x x y v v Et N 2 1 t. x 14
EtSimilarly,N.AndNH=Gt xyWhere is the in-plane shear strain15
• Similarly, • And • Where is the in-plane shear strain. y y x v v Et N 2 1 xy G t γ N t xy xy xy 15