经典电动力学导论 Let there be light 第四章:静磁场§4.3 矢势:A=少M (7-7) 3( 4丌 利用:V×(M×)=2M(§1.2p17) M M 3(M·小下-2M (81.2p20) 磁场:B=VXA 复旦大学物理系 林志方徐建军3
Let there be light ²;>Ä寨 1oÙµ·^| § 4.3 ¥³µA~ = µ0 4π M~ × Z ¥ (r~ − r~ 0 ) |r~ − r~ 0 | 3 dτ 0 = µ0 3 (M~ × r~) r < a µ0a 3 3r 3 (M~ × r~) r > a (1) |^µ∇ × (M~ × r~) = 2M~ (§ 1.2 p17) ∇ × M~ × r~ r 3 ! = −∇ M~ · r~ r 3 ! = 3(M~ · r~)r~ − r 2M~ r 5 (§ 1.2 p20) ^|µB~ = ∇ × A~ EÆ ÔnX Mï 3
经典电动力学导论 Let there be light 第四章:静磁场§4.3 矢势:A=少M (7-7) 3( 4丌 利用:V×(M×)=2M(§1.2p17) M M 3(M·小下-2M (81.2p20) 磁场:B=VXA= 复旦大学物理系 林志方徐建军3
Let there be light ²;>Ä寨 1oÙµ·^| § 4.3 ¥³µA~ = µ0 4π M~ × Z ¥ (r~ − r~ 0 ) |r~ − r~ 0 | 3 dτ 0 = µ0 3 (M~ × r~) r < a µ0a 3 3r 3 (M~ × r~) r > a (1) |^µ∇ × (M~ × r~) = 2M~ (§ 1.2 p17) ∇ × M~ × r~ r 3 ! = −∇ M~ · r~ r 3 ! = 3(M~ · r~)r~ − r 2M~ r 5 (§ 1.2 p20) ^|µB~ = ∇ × A~ = EÆ ÔnX Mï 3
经典电动力学导论 Let there be light 第四章:静磁场§4.3 矢势:A=少M (7-7) 3( 4丌 38(M×r>a 利用:V×(M×)=2M(§1.2p17) M M 3(M·小下-2M (81.2p20) 2uoM 磁场:B=VXA= 复旦大学物理系 林志方徐建军3
Let there be light ²;>Ä寨 1oÙµ·^| § 4.3 ¥³µA~ = µ0 4π M~ × Z ¥ (r~ − r~ 0 ) |r~ − r~ 0 | 3 dτ 0 = µ0 3 (M~ × r~) r < a µ0a 3 3r 3 (M~ × r~) r > a (1) |^µ∇ × (M~ × r~) = 2M~ (§ 1.2 p17) ∇ × M~ × r~ r 3 ! = −∇ M~ · r~ r 3 ! = 3(M~ · r~)r~ − r 2M~ r 5 (§ 1.2 p20) ^|µB~ = ∇ × A~ = 2µ0M~ 3 , r < a EÆ ÔnX Mï 3
经典电动力学导论 Let there be light 第四章:静磁场§4.3 矢势:A=少M (7-7) 3( 4丌 利用:V×(M×)=2M(§1.2p17) M M 3(M·小下-2M (81.2p20) r<a均匀场 磁场:B=VXA= 复旦大学物理系 林志方徐建军3
Let there be light ²;>Ä寨 1oÙµ·^| § 4.3 ¥³µA~ = µ0 4π M~ × Z ¥ (r~ − r~ 0 ) |r~ − r~ 0 | 3 dτ 0 = µ0 3 (M~ × r~) r < a µ0a 3 3r 3 (M~ × r~) r > a (1) |^µ∇ × (M~ × r~) = 2M~ (§ 1.2 p17) ∇ × M~ × r~ r 3 ! = −∇ M~ · r~ r 3 ! = 3(M~ · r~)r~ − r 2M~ r 5 (§ 1.2 p20) ^|µB~ = ∇ × A~ = 2µ0M~ 3 , r < a þ!| EÆ ÔnX Mï 3
经典电动力学导论 Let there be light 第四章:静磁场§4.3 矢势:A=少M 3( 4丌 38(M×r>a 利用:V×(M×)=2M(§1.2p17) M M 3(M·小下-2M (81.2p20) r<a均匀场 磁场:B=VXA= 3 103(m.7)r-r2m 4 复旦大学物理系 林志方徐建军3
Let there be light ²;>Ä寨 1oÙµ·^| § 4.3 ¥³µA~ = µ0 4π M~ × Z ¥ (r~ − r~ 0 ) |r~ − r~ 0 | 3 dτ 0 = µ0 3 (M~ × r~) r < a µ0a 3 3r 3 (M~ × r~) r > a (1) |^µ∇ × (M~ × r~) = 2M~ (§ 1.2 p17) ∇ × M~ × r~ r 3 ! = −∇ M~ · r~ r 3 ! = 3(M~ · r~)r~ − r 2M~ r 5 (§ 1.2 p20) ^|µB~ = ∇ × A~ = 2µ0M~ 3 , r < a þ!| µ0 4π 3(m~ · r~)r~ − r 2m~ r 5 , r > a EÆ ÔnX Mï 3