AAATES回归方程的建立·回归方程J; = bo +bixi1 +b2Xi2 +...+bpXipbo, b1, b2,·….,bp是βo, β1, β2,·….,βp的最小二乘估计值,它们满足Q=E(yi -y)2= E[yi -(bo + bixi1 + b2Xi2 +..+ bpxip)]?=最小
6 回归方程的建立 ⚫回归方程 i i i p ip y = b +b x +b x ++b x 0 1 1 2 2 ˆ b0 , b1 , b2 , ,bp 是0 , 1 , 2 , ,p的最小 二乘估计值,它们满足 = 最小 = − + + + + = − 2 0 1 1 2 2 2 [ ( )] ( ˆ ) i i i p i p i i y b b x b x b x Q y y
EARAATPEESE回归方程的建立求极值,得:O=-2Z(yi -y)=0abo/= -2Z(yi -ji)xij =0ab或nbo +(Z xi1)bi +(Exi2 )b2 +..+(Zxip)bp = Zyi(Exi1)bo +(Exi)b1 +(Exi1Xi2)b2 +.+(Exi1Xip)bp = Exi1yi(Zxip)bo +(Zxi1Xip)b1 +(Zxi2Xip)b2 +.+(Exip)bp =Zxipyi
7 回归方程的建立 = − − = 2 ( ˆ ) 0 0 i i y y b Q = − − = 2 ( i ˆ i ) ij 0 j y y x b Q + + + + = + + + + = + + + + = i p i i p i i p i p p i p i i i i i i i p p i i i i i p p i x b x x b x x b x b x y x b x b x x b x x b x y nb x b x b x b y ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 2 0 1 1 2 2 1 1 2 2 1 1 2 1 0 1 0 1 1 2 2 或 求极值,得: